답안 #864918

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
864918 2023-10-23T17:58:05 Z danikoynov 새 집 (APIO18_new_home) C++14
47 / 100
2331 ms 396696 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
    
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
    
    sort(cor.begin(), cor.end());
    int sz = cor.size();
    
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}
    
    
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
vector < interval_ray > seg_left, seg_right;
    
map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{

    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }

    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    if (n > 6e4)
        exit(0);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:322:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  322 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:425:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  425 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 40 ms 211800 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 41 ms 211792 KB Output is correct
4 Correct 40 ms 211796 KB Output is correct
5 Correct 41 ms 211792 KB Output is correct
6 Correct 43 ms 212412 KB Output is correct
7 Correct 43 ms 212304 KB Output is correct
8 Correct 44 ms 212316 KB Output is correct
9 Correct 43 ms 212304 KB Output is correct
10 Correct 44 ms 212308 KB Output is correct
11 Correct 43 ms 212060 KB Output is correct
12 Correct 43 ms 212052 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 43 ms 212056 KB Output is correct
15 Correct 44 ms 212304 KB Output is correct
16 Correct 43 ms 212316 KB Output is correct
17 Correct 43 ms 212304 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 42 ms 212304 KB Output is correct
20 Correct 45 ms 212304 KB Output is correct
21 Correct 43 ms 211996 KB Output is correct
22 Correct 44 ms 212304 KB Output is correct
23 Correct 42 ms 212192 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 42 ms 212308 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 42 ms 212056 KB Output is correct
28 Correct 44 ms 212372 KB Output is correct
29 Correct 42 ms 211964 KB Output is correct
30 Correct 42 ms 211968 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 40 ms 211800 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 41 ms 211792 KB Output is correct
4 Correct 40 ms 211796 KB Output is correct
5 Correct 41 ms 211792 KB Output is correct
6 Correct 43 ms 212412 KB Output is correct
7 Correct 43 ms 212304 KB Output is correct
8 Correct 44 ms 212316 KB Output is correct
9 Correct 43 ms 212304 KB Output is correct
10 Correct 44 ms 212308 KB Output is correct
11 Correct 43 ms 212060 KB Output is correct
12 Correct 43 ms 212052 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 43 ms 212056 KB Output is correct
15 Correct 44 ms 212304 KB Output is correct
16 Correct 43 ms 212316 KB Output is correct
17 Correct 43 ms 212304 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 42 ms 212304 KB Output is correct
20 Correct 45 ms 212304 KB Output is correct
21 Correct 43 ms 211996 KB Output is correct
22 Correct 44 ms 212304 KB Output is correct
23 Correct 42 ms 212192 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 42 ms 212308 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 42 ms 212056 KB Output is correct
28 Correct 44 ms 212372 KB Output is correct
29 Correct 42 ms 211964 KB Output is correct
30 Correct 42 ms 211968 KB Output is correct
31 Correct 1085 ms 368472 KB Output is correct
32 Correct 136 ms 227864 KB Output is correct
33 Correct 1075 ms 371440 KB Output is correct
34 Correct 1062 ms 368224 KB Output is correct
35 Correct 1114 ms 370580 KB Output is correct
36 Correct 1112 ms 372292 KB Output is correct
37 Correct 827 ms 356332 KB Output is correct
38 Correct 827 ms 358572 KB Output is correct
39 Correct 702 ms 329204 KB Output is correct
40 Correct 722 ms 338156 KB Output is correct
41 Correct 792 ms 318164 KB Output is correct
42 Correct 798 ms 320588 KB Output is correct
43 Correct 109 ms 225252 KB Output is correct
44 Correct 787 ms 315940 KB Output is correct
45 Correct 750 ms 307396 KB Output is correct
46 Correct 657 ms 290052 KB Output is correct
47 Correct 464 ms 282824 KB Output is correct
48 Correct 428 ms 279700 KB Output is correct
49 Correct 551 ms 294708 KB Output is correct
50 Correct 581 ms 311472 KB Output is correct
51 Correct 530 ms 287888 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 1358 ms 382432 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 2331 ms 396696 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 40 ms 211800 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 41 ms 211792 KB Output is correct
4 Correct 40 ms 211796 KB Output is correct
5 Correct 41 ms 211792 KB Output is correct
6 Correct 43 ms 212412 KB Output is correct
7 Correct 43 ms 212304 KB Output is correct
8 Correct 44 ms 212316 KB Output is correct
9 Correct 43 ms 212304 KB Output is correct
10 Correct 44 ms 212308 KB Output is correct
11 Correct 43 ms 212060 KB Output is correct
12 Correct 43 ms 212052 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 43 ms 212056 KB Output is correct
15 Correct 44 ms 212304 KB Output is correct
16 Correct 43 ms 212316 KB Output is correct
17 Correct 43 ms 212304 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 42 ms 212304 KB Output is correct
20 Correct 45 ms 212304 KB Output is correct
21 Correct 43 ms 211996 KB Output is correct
22 Correct 44 ms 212304 KB Output is correct
23 Correct 42 ms 212192 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 42 ms 212308 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 42 ms 212056 KB Output is correct
28 Correct 44 ms 212372 KB Output is correct
29 Correct 42 ms 211964 KB Output is correct
30 Correct 42 ms 211968 KB Output is correct
31 Correct 1085 ms 368472 KB Output is correct
32 Correct 136 ms 227864 KB Output is correct
33 Correct 1075 ms 371440 KB Output is correct
34 Correct 1062 ms 368224 KB Output is correct
35 Correct 1114 ms 370580 KB Output is correct
36 Correct 1112 ms 372292 KB Output is correct
37 Correct 827 ms 356332 KB Output is correct
38 Correct 827 ms 358572 KB Output is correct
39 Correct 702 ms 329204 KB Output is correct
40 Correct 722 ms 338156 KB Output is correct
41 Correct 792 ms 318164 KB Output is correct
42 Correct 798 ms 320588 KB Output is correct
43 Correct 109 ms 225252 KB Output is correct
44 Correct 787 ms 315940 KB Output is correct
45 Correct 750 ms 307396 KB Output is correct
46 Correct 657 ms 290052 KB Output is correct
47 Correct 464 ms 282824 KB Output is correct
48 Correct 428 ms 279700 KB Output is correct
49 Correct 551 ms 294708 KB Output is correct
50 Correct 581 ms 311472 KB Output is correct
51 Correct 530 ms 287888 KB Output is correct
52 Correct 712 ms 350272 KB Output is correct
53 Correct 682 ms 353072 KB Output is correct
54 Correct 901 ms 353680 KB Output is correct
55 Correct 775 ms 331696 KB Output is correct
56 Correct 742 ms 338084 KB Output is correct
57 Correct 847 ms 321856 KB Output is correct
58 Correct 858 ms 335160 KB Output is correct
59 Correct 760 ms 340148 KB Output is correct
60 Correct 848 ms 323944 KB Output is correct
61 Correct 153 ms 246728 KB Output is correct
62 Correct 698 ms 361368 KB Output is correct
63 Correct 785 ms 348632 KB Output is correct
64 Correct 791 ms 349040 KB Output is correct
65 Correct 813 ms 343480 KB Output is correct
66 Correct 797 ms 325536 KB Output is correct
67 Correct 230 ms 248728 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 40 ms 211800 KB Output is correct
2 Correct 42 ms 211796 KB Output is correct
3 Correct 41 ms 211792 KB Output is correct
4 Correct 40 ms 211796 KB Output is correct
5 Correct 41 ms 211792 KB Output is correct
6 Correct 43 ms 212412 KB Output is correct
7 Correct 43 ms 212304 KB Output is correct
8 Correct 44 ms 212316 KB Output is correct
9 Correct 43 ms 212304 KB Output is correct
10 Correct 44 ms 212308 KB Output is correct
11 Correct 43 ms 212060 KB Output is correct
12 Correct 43 ms 212052 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 43 ms 212056 KB Output is correct
15 Correct 44 ms 212304 KB Output is correct
16 Correct 43 ms 212316 KB Output is correct
17 Correct 43 ms 212304 KB Output is correct
18 Correct 44 ms 212316 KB Output is correct
19 Correct 42 ms 212304 KB Output is correct
20 Correct 45 ms 212304 KB Output is correct
21 Correct 43 ms 211996 KB Output is correct
22 Correct 44 ms 212304 KB Output is correct
23 Correct 42 ms 212192 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 42 ms 212308 KB Output is correct
26 Correct 43 ms 212020 KB Output is correct
27 Correct 42 ms 212056 KB Output is correct
28 Correct 44 ms 212372 KB Output is correct
29 Correct 42 ms 211964 KB Output is correct
30 Correct 42 ms 211968 KB Output is correct
31 Correct 1085 ms 368472 KB Output is correct
32 Correct 136 ms 227864 KB Output is correct
33 Correct 1075 ms 371440 KB Output is correct
34 Correct 1062 ms 368224 KB Output is correct
35 Correct 1114 ms 370580 KB Output is correct
36 Correct 1112 ms 372292 KB Output is correct
37 Correct 827 ms 356332 KB Output is correct
38 Correct 827 ms 358572 KB Output is correct
39 Correct 702 ms 329204 KB Output is correct
40 Correct 722 ms 338156 KB Output is correct
41 Correct 792 ms 318164 KB Output is correct
42 Correct 798 ms 320588 KB Output is correct
43 Correct 109 ms 225252 KB Output is correct
44 Correct 787 ms 315940 KB Output is correct
45 Correct 750 ms 307396 KB Output is correct
46 Correct 657 ms 290052 KB Output is correct
47 Correct 464 ms 282824 KB Output is correct
48 Correct 428 ms 279700 KB Output is correct
49 Correct 551 ms 294708 KB Output is correct
50 Correct 581 ms 311472 KB Output is correct
51 Correct 530 ms 287888 KB Output is correct
52 Incorrect 1358 ms 382432 KB Output isn't correct
53 Halted 0 ms 0 KB -