Submission #864915

# Submission time Handle Problem Language Result Execution time Memory
864915 2023-10-23T17:55:07 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
5000 ms 975828 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
    
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
    
    sort(cor.begin(), cor.end());
    int sz = cor.size();
    
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}
    
    
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
vector < interval_ray > seg_left, seg_right;
    
map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{

    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:322:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  322 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:422:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  422 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 40 ms 211796 KB Output is correct
2 Correct 44 ms 211792 KB Output is correct
3 Correct 41 ms 211804 KB Output is correct
4 Correct 44 ms 211916 KB Output is correct
5 Correct 43 ms 211812 KB Output is correct
6 Correct 44 ms 212308 KB Output is correct
7 Correct 46 ms 212308 KB Output is correct
8 Correct 43 ms 212316 KB Output is correct
9 Correct 43 ms 212684 KB Output is correct
10 Correct 44 ms 212312 KB Output is correct
11 Correct 44 ms 212232 KB Output is correct
12 Correct 43 ms 212304 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212364 KB Output is correct
16 Correct 44 ms 212164 KB Output is correct
17 Correct 44 ms 212568 KB Output is correct
18 Correct 43 ms 212308 KB Output is correct
19 Correct 43 ms 212308 KB Output is correct
20 Correct 43 ms 212308 KB Output is correct
21 Correct 42 ms 211800 KB Output is correct
22 Correct 43 ms 212308 KB Output is correct
23 Correct 42 ms 212316 KB Output is correct
24 Correct 43 ms 212308 KB Output is correct
25 Correct 43 ms 212304 KB Output is correct
26 Correct 42 ms 212052 KB Output is correct
27 Correct 42 ms 212060 KB Output is correct
28 Correct 42 ms 212048 KB Output is correct
29 Correct 42 ms 212116 KB Output is correct
30 Correct 42 ms 212188 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 211796 KB Output is correct
2 Correct 44 ms 211792 KB Output is correct
3 Correct 41 ms 211804 KB Output is correct
4 Correct 44 ms 211916 KB Output is correct
5 Correct 43 ms 211812 KB Output is correct
6 Correct 44 ms 212308 KB Output is correct
7 Correct 46 ms 212308 KB Output is correct
8 Correct 43 ms 212316 KB Output is correct
9 Correct 43 ms 212684 KB Output is correct
10 Correct 44 ms 212312 KB Output is correct
11 Correct 44 ms 212232 KB Output is correct
12 Correct 43 ms 212304 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212364 KB Output is correct
16 Correct 44 ms 212164 KB Output is correct
17 Correct 44 ms 212568 KB Output is correct
18 Correct 43 ms 212308 KB Output is correct
19 Correct 43 ms 212308 KB Output is correct
20 Correct 43 ms 212308 KB Output is correct
21 Correct 42 ms 211800 KB Output is correct
22 Correct 43 ms 212308 KB Output is correct
23 Correct 42 ms 212316 KB Output is correct
24 Correct 43 ms 212308 KB Output is correct
25 Correct 43 ms 212304 KB Output is correct
26 Correct 42 ms 212052 KB Output is correct
27 Correct 42 ms 212060 KB Output is correct
28 Correct 42 ms 212048 KB Output is correct
29 Correct 42 ms 212116 KB Output is correct
30 Correct 42 ms 212188 KB Output is correct
31 Correct 1091 ms 368832 KB Output is correct
32 Correct 136 ms 228888 KB Output is correct
33 Correct 1080 ms 373020 KB Output is correct
34 Correct 1067 ms 369208 KB Output is correct
35 Correct 1201 ms 369700 KB Output is correct
36 Correct 1121 ms 370508 KB Output is correct
37 Correct 853 ms 356676 KB Output is correct
38 Correct 901 ms 356392 KB Output is correct
39 Correct 717 ms 329212 KB Output is correct
40 Correct 740 ms 336836 KB Output is correct
41 Correct 804 ms 318140 KB Output is correct
42 Correct 836 ms 320160 KB Output is correct
43 Correct 111 ms 225200 KB Output is correct
44 Correct 790 ms 316108 KB Output is correct
45 Correct 773 ms 307100 KB Output is correct
46 Correct 655 ms 290008 KB Output is correct
47 Correct 450 ms 282808 KB Output is correct
48 Correct 432 ms 279764 KB Output is correct
49 Correct 522 ms 294836 KB Output is correct
50 Correct 581 ms 311484 KB Output is correct
51 Correct 532 ms 288032 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2201 ms 891592 KB Output is correct
2 Correct 2118 ms 895696 KB Output is correct
3 Correct 1978 ms 925240 KB Output is correct
4 Correct 2220 ms 905004 KB Output is correct
5 Correct 1881 ms 902060 KB Output is correct
6 Correct 2045 ms 875300 KB Output is correct
7 Correct 1950 ms 924736 KB Output is correct
8 Correct 2146 ms 882368 KB Output is correct
9 Correct 2283 ms 872112 KB Output is correct
10 Correct 2410 ms 894388 KB Output is correct
11 Correct 1935 ms 916868 KB Output is correct
12 Correct 2216 ms 882264 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5076 ms 975828 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 40 ms 211796 KB Output is correct
2 Correct 44 ms 211792 KB Output is correct
3 Correct 41 ms 211804 KB Output is correct
4 Correct 44 ms 211916 KB Output is correct
5 Correct 43 ms 211812 KB Output is correct
6 Correct 44 ms 212308 KB Output is correct
7 Correct 46 ms 212308 KB Output is correct
8 Correct 43 ms 212316 KB Output is correct
9 Correct 43 ms 212684 KB Output is correct
10 Correct 44 ms 212312 KB Output is correct
11 Correct 44 ms 212232 KB Output is correct
12 Correct 43 ms 212304 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212364 KB Output is correct
16 Correct 44 ms 212164 KB Output is correct
17 Correct 44 ms 212568 KB Output is correct
18 Correct 43 ms 212308 KB Output is correct
19 Correct 43 ms 212308 KB Output is correct
20 Correct 43 ms 212308 KB Output is correct
21 Correct 42 ms 211800 KB Output is correct
22 Correct 43 ms 212308 KB Output is correct
23 Correct 42 ms 212316 KB Output is correct
24 Correct 43 ms 212308 KB Output is correct
25 Correct 43 ms 212304 KB Output is correct
26 Correct 42 ms 212052 KB Output is correct
27 Correct 42 ms 212060 KB Output is correct
28 Correct 42 ms 212048 KB Output is correct
29 Correct 42 ms 212116 KB Output is correct
30 Correct 42 ms 212188 KB Output is correct
31 Correct 1091 ms 368832 KB Output is correct
32 Correct 136 ms 228888 KB Output is correct
33 Correct 1080 ms 373020 KB Output is correct
34 Correct 1067 ms 369208 KB Output is correct
35 Correct 1201 ms 369700 KB Output is correct
36 Correct 1121 ms 370508 KB Output is correct
37 Correct 853 ms 356676 KB Output is correct
38 Correct 901 ms 356392 KB Output is correct
39 Correct 717 ms 329212 KB Output is correct
40 Correct 740 ms 336836 KB Output is correct
41 Correct 804 ms 318140 KB Output is correct
42 Correct 836 ms 320160 KB Output is correct
43 Correct 111 ms 225200 KB Output is correct
44 Correct 790 ms 316108 KB Output is correct
45 Correct 773 ms 307100 KB Output is correct
46 Correct 655 ms 290008 KB Output is correct
47 Correct 450 ms 282808 KB Output is correct
48 Correct 432 ms 279764 KB Output is correct
49 Correct 522 ms 294836 KB Output is correct
50 Correct 581 ms 311484 KB Output is correct
51 Correct 532 ms 288032 KB Output is correct
52 Correct 642 ms 350064 KB Output is correct
53 Correct 615 ms 352444 KB Output is correct
54 Correct 858 ms 353952 KB Output is correct
55 Correct 691 ms 333024 KB Output is correct
56 Correct 647 ms 337824 KB Output is correct
57 Correct 768 ms 323508 KB Output is correct
58 Correct 734 ms 334740 KB Output is correct
59 Correct 716 ms 341292 KB Output is correct
60 Correct 790 ms 324284 KB Output is correct
61 Correct 154 ms 246960 KB Output is correct
62 Correct 645 ms 361952 KB Output is correct
63 Correct 717 ms 347448 KB Output is correct
64 Correct 726 ms 348592 KB Output is correct
65 Correct 768 ms 343192 KB Output is correct
66 Correct 792 ms 325560 KB Output is correct
67 Correct 231 ms 248576 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 211796 KB Output is correct
2 Correct 44 ms 211792 KB Output is correct
3 Correct 41 ms 211804 KB Output is correct
4 Correct 44 ms 211916 KB Output is correct
5 Correct 43 ms 211812 KB Output is correct
6 Correct 44 ms 212308 KB Output is correct
7 Correct 46 ms 212308 KB Output is correct
8 Correct 43 ms 212316 KB Output is correct
9 Correct 43 ms 212684 KB Output is correct
10 Correct 44 ms 212312 KB Output is correct
11 Correct 44 ms 212232 KB Output is correct
12 Correct 43 ms 212304 KB Output is correct
13 Correct 42 ms 212052 KB Output is correct
14 Correct 44 ms 212048 KB Output is correct
15 Correct 43 ms 212364 KB Output is correct
16 Correct 44 ms 212164 KB Output is correct
17 Correct 44 ms 212568 KB Output is correct
18 Correct 43 ms 212308 KB Output is correct
19 Correct 43 ms 212308 KB Output is correct
20 Correct 43 ms 212308 KB Output is correct
21 Correct 42 ms 211800 KB Output is correct
22 Correct 43 ms 212308 KB Output is correct
23 Correct 42 ms 212316 KB Output is correct
24 Correct 43 ms 212308 KB Output is correct
25 Correct 43 ms 212304 KB Output is correct
26 Correct 42 ms 212052 KB Output is correct
27 Correct 42 ms 212060 KB Output is correct
28 Correct 42 ms 212048 KB Output is correct
29 Correct 42 ms 212116 KB Output is correct
30 Correct 42 ms 212188 KB Output is correct
31 Correct 1091 ms 368832 KB Output is correct
32 Correct 136 ms 228888 KB Output is correct
33 Correct 1080 ms 373020 KB Output is correct
34 Correct 1067 ms 369208 KB Output is correct
35 Correct 1201 ms 369700 KB Output is correct
36 Correct 1121 ms 370508 KB Output is correct
37 Correct 853 ms 356676 KB Output is correct
38 Correct 901 ms 356392 KB Output is correct
39 Correct 717 ms 329212 KB Output is correct
40 Correct 740 ms 336836 KB Output is correct
41 Correct 804 ms 318140 KB Output is correct
42 Correct 836 ms 320160 KB Output is correct
43 Correct 111 ms 225200 KB Output is correct
44 Correct 790 ms 316108 KB Output is correct
45 Correct 773 ms 307100 KB Output is correct
46 Correct 655 ms 290008 KB Output is correct
47 Correct 450 ms 282808 KB Output is correct
48 Correct 432 ms 279764 KB Output is correct
49 Correct 522 ms 294836 KB Output is correct
50 Correct 581 ms 311484 KB Output is correct
51 Correct 532 ms 288032 KB Output is correct
52 Correct 2201 ms 891592 KB Output is correct
53 Correct 2118 ms 895696 KB Output is correct
54 Correct 1978 ms 925240 KB Output is correct
55 Correct 2220 ms 905004 KB Output is correct
56 Correct 1881 ms 902060 KB Output is correct
57 Correct 2045 ms 875300 KB Output is correct
58 Correct 1950 ms 924736 KB Output is correct
59 Correct 2146 ms 882368 KB Output is correct
60 Correct 2283 ms 872112 KB Output is correct
61 Correct 2410 ms 894388 KB Output is correct
62 Correct 1935 ms 916868 KB Output is correct
63 Correct 2216 ms 882264 KB Output is correct
64 Execution timed out 5076 ms 975828 KB Time limit exceeded
65 Halted 0 ms 0 KB -