Submission #864911

# Submission time Handle Problem Language Result Execution time Memory
864911 2023-10-23T17:52:59 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
2744 ms 829296 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 3e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
    
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
    
    sort(cor.begin(), cor.end());
    int sz = cor.size();
    
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}
    
    
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
vector < interval_ray > seg_left, seg_right;
    
map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{
    dat.push_back(ray_right[type][{start, finish}]);
    dat.push_back(timer - 1);
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:323:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  323 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:423:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  423 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 23 ms 111192 KB Output is correct
2 Correct 21 ms 111196 KB Output is correct
3 Correct 21 ms 111196 KB Output is correct
4 Correct 22 ms 111192 KB Output is correct
5 Correct 22 ms 111448 KB Output is correct
6 Correct 24 ms 111964 KB Output is correct
7 Correct 25 ms 111984 KB Output is correct
8 Correct 23 ms 111960 KB Output is correct
9 Correct 23 ms 111960 KB Output is correct
10 Correct 24 ms 111964 KB Output is correct
11 Correct 23 ms 111708 KB Output is correct
12 Correct 25 ms 111956 KB Output is correct
13 Correct 22 ms 111448 KB Output is correct
14 Correct 25 ms 111708 KB Output is correct
15 Correct 23 ms 111708 KB Output is correct
16 Correct 24 ms 111704 KB Output is correct
17 Correct 24 ms 111708 KB Output is correct
18 Correct 24 ms 111708 KB Output is correct
19 Correct 25 ms 111708 KB Output is correct
20 Correct 24 ms 111708 KB Output is correct
21 Correct 22 ms 111448 KB Output is correct
22 Correct 23 ms 111964 KB Output is correct
23 Correct 23 ms 111900 KB Output is correct
24 Correct 24 ms 111704 KB Output is correct
25 Correct 23 ms 111724 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 22 ms 111452 KB Output is correct
28 Correct 24 ms 111708 KB Output is correct
29 Correct 23 ms 111704 KB Output is correct
30 Correct 22 ms 111452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 111192 KB Output is correct
2 Correct 21 ms 111196 KB Output is correct
3 Correct 21 ms 111196 KB Output is correct
4 Correct 22 ms 111192 KB Output is correct
5 Correct 22 ms 111448 KB Output is correct
6 Correct 24 ms 111964 KB Output is correct
7 Correct 25 ms 111984 KB Output is correct
8 Correct 23 ms 111960 KB Output is correct
9 Correct 23 ms 111960 KB Output is correct
10 Correct 24 ms 111964 KB Output is correct
11 Correct 23 ms 111708 KB Output is correct
12 Correct 25 ms 111956 KB Output is correct
13 Correct 22 ms 111448 KB Output is correct
14 Correct 25 ms 111708 KB Output is correct
15 Correct 23 ms 111708 KB Output is correct
16 Correct 24 ms 111704 KB Output is correct
17 Correct 24 ms 111708 KB Output is correct
18 Correct 24 ms 111708 KB Output is correct
19 Correct 25 ms 111708 KB Output is correct
20 Correct 24 ms 111708 KB Output is correct
21 Correct 22 ms 111448 KB Output is correct
22 Correct 23 ms 111964 KB Output is correct
23 Correct 23 ms 111900 KB Output is correct
24 Correct 24 ms 111704 KB Output is correct
25 Correct 23 ms 111724 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 22 ms 111452 KB Output is correct
28 Correct 24 ms 111708 KB Output is correct
29 Correct 23 ms 111704 KB Output is correct
30 Correct 22 ms 111452 KB Output is correct
31 Correct 1223 ms 282872 KB Output is correct
32 Correct 129 ms 131316 KB Output is correct
33 Correct 1191 ms 288244 KB Output is correct
34 Correct 1326 ms 285188 KB Output is correct
35 Correct 1393 ms 279740 KB Output is correct
36 Correct 1350 ms 281704 KB Output is correct
37 Correct 948 ms 273400 KB Output is correct
38 Correct 985 ms 271852 KB Output is correct
39 Correct 755 ms 245464 KB Output is correct
40 Correct 774 ms 249960 KB Output is correct
41 Correct 833 ms 227288 KB Output is correct
42 Correct 826 ms 229320 KB Output is correct
43 Correct 96 ms 127336 KB Output is correct
44 Correct 851 ms 225212 KB Output is correct
45 Correct 800 ms 215992 KB Output is correct
46 Correct 710 ms 199100 KB Output is correct
47 Correct 466 ms 193804 KB Output is correct
48 Correct 458 ms 190156 KB Output is correct
49 Correct 578 ms 203732 KB Output is correct
50 Correct 595 ms 220968 KB Output is correct
51 Correct 555 ms 198856 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2183 ms 765996 KB Output is correct
2 Correct 2174 ms 777396 KB Output is correct
3 Correct 1998 ms 783036 KB Output is correct
4 Correct 2242 ms 791040 KB Output is correct
5 Correct 1927 ms 829296 KB Output is correct
6 Correct 2147 ms 778868 KB Output is correct
7 Correct 1986 ms 782828 KB Output is correct
8 Correct 2328 ms 792468 KB Output is correct
9 Correct 2564 ms 772104 KB Output is correct
10 Correct 2630 ms 776076 KB Output is correct
11 Correct 2120 ms 802760 KB Output is correct
12 Correct 2380 ms 807004 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 2744 ms 652768 KB Execution killed with signal 11
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 23 ms 111192 KB Output is correct
2 Correct 21 ms 111196 KB Output is correct
3 Correct 21 ms 111196 KB Output is correct
4 Correct 22 ms 111192 KB Output is correct
5 Correct 22 ms 111448 KB Output is correct
6 Correct 24 ms 111964 KB Output is correct
7 Correct 25 ms 111984 KB Output is correct
8 Correct 23 ms 111960 KB Output is correct
9 Correct 23 ms 111960 KB Output is correct
10 Correct 24 ms 111964 KB Output is correct
11 Correct 23 ms 111708 KB Output is correct
12 Correct 25 ms 111956 KB Output is correct
13 Correct 22 ms 111448 KB Output is correct
14 Correct 25 ms 111708 KB Output is correct
15 Correct 23 ms 111708 KB Output is correct
16 Correct 24 ms 111704 KB Output is correct
17 Correct 24 ms 111708 KB Output is correct
18 Correct 24 ms 111708 KB Output is correct
19 Correct 25 ms 111708 KB Output is correct
20 Correct 24 ms 111708 KB Output is correct
21 Correct 22 ms 111448 KB Output is correct
22 Correct 23 ms 111964 KB Output is correct
23 Correct 23 ms 111900 KB Output is correct
24 Correct 24 ms 111704 KB Output is correct
25 Correct 23 ms 111724 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 22 ms 111452 KB Output is correct
28 Correct 24 ms 111708 KB Output is correct
29 Correct 23 ms 111704 KB Output is correct
30 Correct 22 ms 111452 KB Output is correct
31 Correct 1223 ms 282872 KB Output is correct
32 Correct 129 ms 131316 KB Output is correct
33 Correct 1191 ms 288244 KB Output is correct
34 Correct 1326 ms 285188 KB Output is correct
35 Correct 1393 ms 279740 KB Output is correct
36 Correct 1350 ms 281704 KB Output is correct
37 Correct 948 ms 273400 KB Output is correct
38 Correct 985 ms 271852 KB Output is correct
39 Correct 755 ms 245464 KB Output is correct
40 Correct 774 ms 249960 KB Output is correct
41 Correct 833 ms 227288 KB Output is correct
42 Correct 826 ms 229320 KB Output is correct
43 Correct 96 ms 127336 KB Output is correct
44 Correct 851 ms 225212 KB Output is correct
45 Correct 800 ms 215992 KB Output is correct
46 Correct 710 ms 199100 KB Output is correct
47 Correct 466 ms 193804 KB Output is correct
48 Correct 458 ms 190156 KB Output is correct
49 Correct 578 ms 203732 KB Output is correct
50 Correct 595 ms 220968 KB Output is correct
51 Correct 555 ms 198856 KB Output is correct
52 Correct 796 ms 260932 KB Output is correct
53 Correct 754 ms 263020 KB Output is correct
54 Correct 929 ms 264408 KB Output is correct
55 Correct 859 ms 244816 KB Output is correct
56 Correct 817 ms 249840 KB Output is correct
57 Correct 919 ms 231908 KB Output is correct
58 Correct 855 ms 245264 KB Output is correct
59 Correct 839 ms 248216 KB Output is correct
60 Correct 952 ms 233840 KB Output is correct
61 Correct 141 ms 150880 KB Output is correct
62 Correct 790 ms 262252 KB Output is correct
63 Correct 874 ms 258744 KB Output is correct
64 Correct 806 ms 258712 KB Output is correct
65 Correct 866 ms 253916 KB Output is correct
66 Correct 832 ms 234688 KB Output is correct
67 Correct 229 ms 151652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 111192 KB Output is correct
2 Correct 21 ms 111196 KB Output is correct
3 Correct 21 ms 111196 KB Output is correct
4 Correct 22 ms 111192 KB Output is correct
5 Correct 22 ms 111448 KB Output is correct
6 Correct 24 ms 111964 KB Output is correct
7 Correct 25 ms 111984 KB Output is correct
8 Correct 23 ms 111960 KB Output is correct
9 Correct 23 ms 111960 KB Output is correct
10 Correct 24 ms 111964 KB Output is correct
11 Correct 23 ms 111708 KB Output is correct
12 Correct 25 ms 111956 KB Output is correct
13 Correct 22 ms 111448 KB Output is correct
14 Correct 25 ms 111708 KB Output is correct
15 Correct 23 ms 111708 KB Output is correct
16 Correct 24 ms 111704 KB Output is correct
17 Correct 24 ms 111708 KB Output is correct
18 Correct 24 ms 111708 KB Output is correct
19 Correct 25 ms 111708 KB Output is correct
20 Correct 24 ms 111708 KB Output is correct
21 Correct 22 ms 111448 KB Output is correct
22 Correct 23 ms 111964 KB Output is correct
23 Correct 23 ms 111900 KB Output is correct
24 Correct 24 ms 111704 KB Output is correct
25 Correct 23 ms 111724 KB Output is correct
26 Correct 23 ms 111708 KB Output is correct
27 Correct 22 ms 111452 KB Output is correct
28 Correct 24 ms 111708 KB Output is correct
29 Correct 23 ms 111704 KB Output is correct
30 Correct 22 ms 111452 KB Output is correct
31 Correct 1223 ms 282872 KB Output is correct
32 Correct 129 ms 131316 KB Output is correct
33 Correct 1191 ms 288244 KB Output is correct
34 Correct 1326 ms 285188 KB Output is correct
35 Correct 1393 ms 279740 KB Output is correct
36 Correct 1350 ms 281704 KB Output is correct
37 Correct 948 ms 273400 KB Output is correct
38 Correct 985 ms 271852 KB Output is correct
39 Correct 755 ms 245464 KB Output is correct
40 Correct 774 ms 249960 KB Output is correct
41 Correct 833 ms 227288 KB Output is correct
42 Correct 826 ms 229320 KB Output is correct
43 Correct 96 ms 127336 KB Output is correct
44 Correct 851 ms 225212 KB Output is correct
45 Correct 800 ms 215992 KB Output is correct
46 Correct 710 ms 199100 KB Output is correct
47 Correct 466 ms 193804 KB Output is correct
48 Correct 458 ms 190156 KB Output is correct
49 Correct 578 ms 203732 KB Output is correct
50 Correct 595 ms 220968 KB Output is correct
51 Correct 555 ms 198856 KB Output is correct
52 Correct 2183 ms 765996 KB Output is correct
53 Correct 2174 ms 777396 KB Output is correct
54 Correct 1998 ms 783036 KB Output is correct
55 Correct 2242 ms 791040 KB Output is correct
56 Correct 1927 ms 829296 KB Output is correct
57 Correct 2147 ms 778868 KB Output is correct
58 Correct 1986 ms 782828 KB Output is correct
59 Correct 2328 ms 792468 KB Output is correct
60 Correct 2564 ms 772104 KB Output is correct
61 Correct 2630 ms 776076 KB Output is correct
62 Correct 2120 ms 802760 KB Output is correct
63 Correct 2380 ms 807004 KB Output is correct
64 Runtime error 2744 ms 652768 KB Execution killed with signal 11
65 Halted 0 ms 0 KB -