Submission #864908

# Submission time Handle Problem Language Result Execution time Memory
864908 2023-10-23T17:51:32 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
5000 ms 1048576 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
    
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
    
    sort(cor.begin(), cor.end());
    int sz = cor.size();
    
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}
    
    
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
vector < interval_ray > seg_left, seg_right;
    
map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{
    dat.push_back(ray_right[type][{start, finish}]);
    dat.push_back(timer - 1);
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        ///dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        //assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e + 1] - 1, cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:323:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  323 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:423:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  423 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 43 ms 211800 KB Output is correct
3 Correct 47 ms 211792 KB Output is correct
4 Correct 42 ms 211804 KB Output is correct
5 Correct 49 ms 211756 KB Output is correct
6 Correct 44 ms 212304 KB Output is correct
7 Correct 43 ms 212428 KB Output is correct
8 Correct 44 ms 212304 KB Output is correct
9 Correct 44 ms 212312 KB Output is correct
10 Correct 46 ms 212572 KB Output is correct
11 Correct 46 ms 212264 KB Output is correct
12 Correct 47 ms 212172 KB Output is correct
13 Correct 42 ms 212048 KB Output is correct
14 Correct 42 ms 212200 KB Output is correct
15 Correct 47 ms 212308 KB Output is correct
16 Correct 43 ms 212428 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212228 KB Output is correct
19 Correct 51 ms 212308 KB Output is correct
20 Correct 49 ms 212316 KB Output is correct
21 Correct 42 ms 212052 KB Output is correct
22 Correct 45 ms 212316 KB Output is correct
23 Correct 44 ms 212316 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 43 ms 212272 KB Output is correct
26 Correct 50 ms 212060 KB Output is correct
27 Correct 52 ms 212052 KB Output is correct
28 Correct 43 ms 212056 KB Output is correct
29 Correct 43 ms 212048 KB Output is correct
30 Correct 43 ms 212076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 43 ms 211800 KB Output is correct
3 Correct 47 ms 211792 KB Output is correct
4 Correct 42 ms 211804 KB Output is correct
5 Correct 49 ms 211756 KB Output is correct
6 Correct 44 ms 212304 KB Output is correct
7 Correct 43 ms 212428 KB Output is correct
8 Correct 44 ms 212304 KB Output is correct
9 Correct 44 ms 212312 KB Output is correct
10 Correct 46 ms 212572 KB Output is correct
11 Correct 46 ms 212264 KB Output is correct
12 Correct 47 ms 212172 KB Output is correct
13 Correct 42 ms 212048 KB Output is correct
14 Correct 42 ms 212200 KB Output is correct
15 Correct 47 ms 212308 KB Output is correct
16 Correct 43 ms 212428 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212228 KB Output is correct
19 Correct 51 ms 212308 KB Output is correct
20 Correct 49 ms 212316 KB Output is correct
21 Correct 42 ms 212052 KB Output is correct
22 Correct 45 ms 212316 KB Output is correct
23 Correct 44 ms 212316 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 43 ms 212272 KB Output is correct
26 Correct 50 ms 212060 KB Output is correct
27 Correct 52 ms 212052 KB Output is correct
28 Correct 43 ms 212056 KB Output is correct
29 Correct 43 ms 212048 KB Output is correct
30 Correct 43 ms 212076 KB Output is correct
31 Correct 1413 ms 385940 KB Output is correct
32 Correct 156 ms 231648 KB Output is correct
33 Correct 1343 ms 391292 KB Output is correct
34 Correct 1192 ms 388432 KB Output is correct
35 Correct 1242 ms 385068 KB Output is correct
36 Correct 1254 ms 386740 KB Output is correct
37 Correct 953 ms 375804 KB Output is correct
38 Correct 961 ms 378440 KB Output is correct
39 Correct 769 ms 347636 KB Output is correct
40 Correct 794 ms 356024 KB Output is correct
41 Correct 842 ms 331728 KB Output is correct
42 Correct 835 ms 333936 KB Output is correct
43 Correct 126 ms 225836 KB Output is correct
44 Correct 873 ms 329696 KB Output is correct
45 Correct 809 ms 320700 KB Output is correct
46 Correct 725 ms 303544 KB Output is correct
47 Correct 480 ms 296384 KB Output is correct
48 Correct 493 ms 293104 KB Output is correct
49 Correct 584 ms 306372 KB Output is correct
50 Correct 616 ms 325432 KB Output is correct
51 Correct 580 ms 301540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2212 ms 908556 KB Output is correct
2 Correct 2147 ms 911520 KB Output is correct
3 Correct 2016 ms 958500 KB Output is correct
4 Correct 2265 ms 898728 KB Output is correct
5 Correct 1958 ms 896012 KB Output is correct
6 Correct 2132 ms 898324 KB Output is correct
7 Correct 2017 ms 931672 KB Output is correct
8 Correct 2213 ms 903388 KB Output is correct
9 Correct 2302 ms 873320 KB Output is correct
10 Correct 2530 ms 947060 KB Output is correct
11 Correct 2066 ms 899292 KB Output is correct
12 Correct 2216 ms 920760 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 6309 ms 1048576 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 43 ms 211800 KB Output is correct
3 Correct 47 ms 211792 KB Output is correct
4 Correct 42 ms 211804 KB Output is correct
5 Correct 49 ms 211756 KB Output is correct
6 Correct 44 ms 212304 KB Output is correct
7 Correct 43 ms 212428 KB Output is correct
8 Correct 44 ms 212304 KB Output is correct
9 Correct 44 ms 212312 KB Output is correct
10 Correct 46 ms 212572 KB Output is correct
11 Correct 46 ms 212264 KB Output is correct
12 Correct 47 ms 212172 KB Output is correct
13 Correct 42 ms 212048 KB Output is correct
14 Correct 42 ms 212200 KB Output is correct
15 Correct 47 ms 212308 KB Output is correct
16 Correct 43 ms 212428 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212228 KB Output is correct
19 Correct 51 ms 212308 KB Output is correct
20 Correct 49 ms 212316 KB Output is correct
21 Correct 42 ms 212052 KB Output is correct
22 Correct 45 ms 212316 KB Output is correct
23 Correct 44 ms 212316 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 43 ms 212272 KB Output is correct
26 Correct 50 ms 212060 KB Output is correct
27 Correct 52 ms 212052 KB Output is correct
28 Correct 43 ms 212056 KB Output is correct
29 Correct 43 ms 212048 KB Output is correct
30 Correct 43 ms 212076 KB Output is correct
31 Correct 1413 ms 385940 KB Output is correct
32 Correct 156 ms 231648 KB Output is correct
33 Correct 1343 ms 391292 KB Output is correct
34 Correct 1192 ms 388432 KB Output is correct
35 Correct 1242 ms 385068 KB Output is correct
36 Correct 1254 ms 386740 KB Output is correct
37 Correct 953 ms 375804 KB Output is correct
38 Correct 961 ms 378440 KB Output is correct
39 Correct 769 ms 347636 KB Output is correct
40 Correct 794 ms 356024 KB Output is correct
41 Correct 842 ms 331728 KB Output is correct
42 Correct 835 ms 333936 KB Output is correct
43 Correct 126 ms 225836 KB Output is correct
44 Correct 873 ms 329696 KB Output is correct
45 Correct 809 ms 320700 KB Output is correct
46 Correct 725 ms 303544 KB Output is correct
47 Correct 480 ms 296384 KB Output is correct
48 Correct 493 ms 293104 KB Output is correct
49 Correct 584 ms 306372 KB Output is correct
50 Correct 616 ms 325432 KB Output is correct
51 Correct 580 ms 301540 KB Output is correct
52 Correct 750 ms 367648 KB Output is correct
53 Correct 706 ms 369840 KB Output is correct
54 Correct 897 ms 370212 KB Output is correct
55 Correct 787 ms 349548 KB Output is correct
56 Correct 732 ms 355776 KB Output is correct
57 Correct 845 ms 336348 KB Output is correct
58 Correct 833 ms 349860 KB Output is correct
59 Correct 808 ms 353780 KB Output is correct
60 Correct 862 ms 338768 KB Output is correct
61 Correct 163 ms 251236 KB Output is correct
62 Correct 740 ms 367640 KB Output is correct
63 Correct 796 ms 362352 KB Output is correct
64 Correct 810 ms 362612 KB Output is correct
65 Correct 864 ms 358072 KB Output is correct
66 Correct 900 ms 339132 KB Output is correct
67 Correct 244 ms 249956 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 42 ms 211796 KB Output is correct
2 Correct 43 ms 211800 KB Output is correct
3 Correct 47 ms 211792 KB Output is correct
4 Correct 42 ms 211804 KB Output is correct
5 Correct 49 ms 211756 KB Output is correct
6 Correct 44 ms 212304 KB Output is correct
7 Correct 43 ms 212428 KB Output is correct
8 Correct 44 ms 212304 KB Output is correct
9 Correct 44 ms 212312 KB Output is correct
10 Correct 46 ms 212572 KB Output is correct
11 Correct 46 ms 212264 KB Output is correct
12 Correct 47 ms 212172 KB Output is correct
13 Correct 42 ms 212048 KB Output is correct
14 Correct 42 ms 212200 KB Output is correct
15 Correct 47 ms 212308 KB Output is correct
16 Correct 43 ms 212428 KB Output is correct
17 Correct 44 ms 212316 KB Output is correct
18 Correct 44 ms 212228 KB Output is correct
19 Correct 51 ms 212308 KB Output is correct
20 Correct 49 ms 212316 KB Output is correct
21 Correct 42 ms 212052 KB Output is correct
22 Correct 45 ms 212316 KB Output is correct
23 Correct 44 ms 212316 KB Output is correct
24 Correct 44 ms 212308 KB Output is correct
25 Correct 43 ms 212272 KB Output is correct
26 Correct 50 ms 212060 KB Output is correct
27 Correct 52 ms 212052 KB Output is correct
28 Correct 43 ms 212056 KB Output is correct
29 Correct 43 ms 212048 KB Output is correct
30 Correct 43 ms 212076 KB Output is correct
31 Correct 1413 ms 385940 KB Output is correct
32 Correct 156 ms 231648 KB Output is correct
33 Correct 1343 ms 391292 KB Output is correct
34 Correct 1192 ms 388432 KB Output is correct
35 Correct 1242 ms 385068 KB Output is correct
36 Correct 1254 ms 386740 KB Output is correct
37 Correct 953 ms 375804 KB Output is correct
38 Correct 961 ms 378440 KB Output is correct
39 Correct 769 ms 347636 KB Output is correct
40 Correct 794 ms 356024 KB Output is correct
41 Correct 842 ms 331728 KB Output is correct
42 Correct 835 ms 333936 KB Output is correct
43 Correct 126 ms 225836 KB Output is correct
44 Correct 873 ms 329696 KB Output is correct
45 Correct 809 ms 320700 KB Output is correct
46 Correct 725 ms 303544 KB Output is correct
47 Correct 480 ms 296384 KB Output is correct
48 Correct 493 ms 293104 KB Output is correct
49 Correct 584 ms 306372 KB Output is correct
50 Correct 616 ms 325432 KB Output is correct
51 Correct 580 ms 301540 KB Output is correct
52 Correct 2212 ms 908556 KB Output is correct
53 Correct 2147 ms 911520 KB Output is correct
54 Correct 2016 ms 958500 KB Output is correct
55 Correct 2265 ms 898728 KB Output is correct
56 Correct 1958 ms 896012 KB Output is correct
57 Correct 2132 ms 898324 KB Output is correct
58 Correct 2017 ms 931672 KB Output is correct
59 Correct 2213 ms 903388 KB Output is correct
60 Correct 2302 ms 873320 KB Output is correct
61 Correct 2530 ms 947060 KB Output is correct
62 Correct 2066 ms 899292 KB Output is correct
63 Correct 2216 ms 920760 KB Output is correct
64 Execution timed out 6309 ms 1048576 KB Time limit exceeded
65 Halted 0 ms 0 KB -