Submission #864906

# Submission time Handle Problem Language Result Execution time Memory
864906 2023-10-23T17:48:59 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
5000 ms 1048576 KB
#include<bits/stdc++.h>
#define endl '\n'
    
using namespace std;
typedef long long ll;
    
const int maxn = 6e5 + 10, inf = 1e9;
    
struct store
{
    int x, t, a, b;
}s[maxn];
    
struct query
{
    int l, y, idx;
}task[maxn];
    
int n, k, q;
    
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
    
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
    
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
    
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
    
    sort(cor.begin(), cor.end());
    int sz = cor.size();
    
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}
    
    
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
    
struct event
{
    int type, cor, add, arrive;
    
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
    
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
    
    if (e1.add != e2.add)
        return e1.add < e2.add;
    
    return e1.cor < e2.cor; /// could have dublicates
}
    
    
    
multiset < int > act[maxn];
    
struct interval_ray
{
    int s, e;
    pair < int, int > ray;
    
    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};
    
vector < interval_ray > seg_left, seg_right;
    
map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}
    
void make_right_segment(int start, int finish, int timer, int type)
{
    dat.push_back(ray_right[type][{start, finish}]);
    dat.push_back(timer - 1);
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}
    
void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }
    
    act[type].insert(cor);
}
    
    
void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;
    
        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;
    
    }
    else
    if (bef == -inf)
    {
    
        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;
    
    
    }
    else
    if (aft == inf)
    {
    
        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);
    
        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);
    
                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
    
    }
    
    act[type].erase(it);
}
    
int ans[maxn];
    
vector < interval_ray > tree_left[maxn * 4], tree_right[maxn * 4];
int pt_lf[4 * maxn], bs_lf[4 * maxn];
int pt_rf[4 * maxn], bs_rf[4 * maxn];
    
bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;
    
    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }
    
    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);
    
}
    
unordered_map < int, int > event_times;
    
void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
    
    sort(events.begin(), events.end(), cmp_event);
    
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
    
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);
    
    for (event cur : events)
    {
        dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }
    
    dat.push_back(inf - 1);
    dat.push_back(inf);
    
    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);
    
    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }
    
    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }
    
    
    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }
    
    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    for (interval_ray cur : seg_left)
    {
        assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    for (interval_ray cur : seg_right)
    {
        assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }
    
    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;
    
        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
    
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
    
        while(true)
        {
    
            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/
    
    
            if (left == right)
                break;
    
            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }
    
        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
    
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
    
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
    
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
    
    
    
    
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
    
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
    
1 1 1
100000000 1 1 1
1 1
    
    
    
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:323:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  323 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:423:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  423 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211800 KB Output is correct
2 Correct 42 ms 211812 KB Output is correct
3 Correct 40 ms 211660 KB Output is correct
4 Correct 42 ms 211800 KB Output is correct
5 Correct 42 ms 211804 KB Output is correct
6 Correct 44 ms 212488 KB Output is correct
7 Correct 51 ms 212356 KB Output is correct
8 Correct 43 ms 212312 KB Output is correct
9 Correct 42 ms 212316 KB Output is correct
10 Correct 51 ms 212592 KB Output is correct
11 Correct 42 ms 212316 KB Output is correct
12 Correct 52 ms 212316 KB Output is correct
13 Correct 45 ms 212048 KB Output is correct
14 Correct 42 ms 212216 KB Output is correct
15 Correct 45 ms 212312 KB Output is correct
16 Correct 42 ms 212316 KB Output is correct
17 Correct 47 ms 212232 KB Output is correct
18 Correct 44 ms 212608 KB Output is correct
19 Correct 44 ms 212316 KB Output is correct
20 Correct 44 ms 212308 KB Output is correct
21 Correct 42 ms 212064 KB Output is correct
22 Correct 51 ms 212308 KB Output is correct
23 Correct 45 ms 212304 KB Output is correct
24 Correct 51 ms 212312 KB Output is correct
25 Correct 55 ms 212256 KB Output is correct
26 Correct 45 ms 212052 KB Output is correct
27 Correct 52 ms 212064 KB Output is correct
28 Correct 43 ms 212292 KB Output is correct
29 Correct 43 ms 212060 KB Output is correct
30 Correct 49 ms 212056 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211800 KB Output is correct
2 Correct 42 ms 211812 KB Output is correct
3 Correct 40 ms 211660 KB Output is correct
4 Correct 42 ms 211800 KB Output is correct
5 Correct 42 ms 211804 KB Output is correct
6 Correct 44 ms 212488 KB Output is correct
7 Correct 51 ms 212356 KB Output is correct
8 Correct 43 ms 212312 KB Output is correct
9 Correct 42 ms 212316 KB Output is correct
10 Correct 51 ms 212592 KB Output is correct
11 Correct 42 ms 212316 KB Output is correct
12 Correct 52 ms 212316 KB Output is correct
13 Correct 45 ms 212048 KB Output is correct
14 Correct 42 ms 212216 KB Output is correct
15 Correct 45 ms 212312 KB Output is correct
16 Correct 42 ms 212316 KB Output is correct
17 Correct 47 ms 212232 KB Output is correct
18 Correct 44 ms 212608 KB Output is correct
19 Correct 44 ms 212316 KB Output is correct
20 Correct 44 ms 212308 KB Output is correct
21 Correct 42 ms 212064 KB Output is correct
22 Correct 51 ms 212308 KB Output is correct
23 Correct 45 ms 212304 KB Output is correct
24 Correct 51 ms 212312 KB Output is correct
25 Correct 55 ms 212256 KB Output is correct
26 Correct 45 ms 212052 KB Output is correct
27 Correct 52 ms 212064 KB Output is correct
28 Correct 43 ms 212292 KB Output is correct
29 Correct 43 ms 212060 KB Output is correct
30 Correct 49 ms 212056 KB Output is correct
31 Correct 1517 ms 385172 KB Output is correct
32 Correct 163 ms 229956 KB Output is correct
33 Correct 1425 ms 389084 KB Output is correct
34 Correct 1408 ms 390736 KB Output is correct
35 Correct 1456 ms 386836 KB Output is correct
36 Correct 1472 ms 385592 KB Output is correct
37 Correct 1075 ms 378356 KB Output is correct
38 Correct 1102 ms 377180 KB Output is correct
39 Correct 880 ms 347692 KB Output is correct
40 Correct 867 ms 354780 KB Output is correct
41 Correct 1022 ms 335548 KB Output is correct
42 Correct 930 ms 338088 KB Output is correct
43 Correct 120 ms 228444 KB Output is correct
44 Correct 867 ms 333860 KB Output is correct
45 Correct 852 ms 324076 KB Output is correct
46 Correct 736 ms 307720 KB Output is correct
47 Correct 514 ms 301840 KB Output is correct
48 Correct 491 ms 297828 KB Output is correct
49 Correct 594 ms 310596 KB Output is correct
50 Correct 693 ms 328284 KB Output is correct
51 Correct 608 ms 307724 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2252 ms 931060 KB Output is correct
2 Correct 2189 ms 894748 KB Output is correct
3 Correct 2039 ms 914176 KB Output is correct
4 Correct 2205 ms 905520 KB Output is correct
5 Correct 2000 ms 901260 KB Output is correct
6 Correct 2195 ms 896196 KB Output is correct
7 Correct 2025 ms 950836 KB Output is correct
8 Correct 2184 ms 882164 KB Output is correct
9 Correct 2386 ms 895636 KB Output is correct
10 Correct 2466 ms 876896 KB Output is correct
11 Correct 2057 ms 882996 KB Output is correct
12 Correct 2340 ms 898272 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 6501 ms 1048576 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211800 KB Output is correct
2 Correct 42 ms 211812 KB Output is correct
3 Correct 40 ms 211660 KB Output is correct
4 Correct 42 ms 211800 KB Output is correct
5 Correct 42 ms 211804 KB Output is correct
6 Correct 44 ms 212488 KB Output is correct
7 Correct 51 ms 212356 KB Output is correct
8 Correct 43 ms 212312 KB Output is correct
9 Correct 42 ms 212316 KB Output is correct
10 Correct 51 ms 212592 KB Output is correct
11 Correct 42 ms 212316 KB Output is correct
12 Correct 52 ms 212316 KB Output is correct
13 Correct 45 ms 212048 KB Output is correct
14 Correct 42 ms 212216 KB Output is correct
15 Correct 45 ms 212312 KB Output is correct
16 Correct 42 ms 212316 KB Output is correct
17 Correct 47 ms 212232 KB Output is correct
18 Correct 44 ms 212608 KB Output is correct
19 Correct 44 ms 212316 KB Output is correct
20 Correct 44 ms 212308 KB Output is correct
21 Correct 42 ms 212064 KB Output is correct
22 Correct 51 ms 212308 KB Output is correct
23 Correct 45 ms 212304 KB Output is correct
24 Correct 51 ms 212312 KB Output is correct
25 Correct 55 ms 212256 KB Output is correct
26 Correct 45 ms 212052 KB Output is correct
27 Correct 52 ms 212064 KB Output is correct
28 Correct 43 ms 212292 KB Output is correct
29 Correct 43 ms 212060 KB Output is correct
30 Correct 49 ms 212056 KB Output is correct
31 Correct 1517 ms 385172 KB Output is correct
32 Correct 163 ms 229956 KB Output is correct
33 Correct 1425 ms 389084 KB Output is correct
34 Correct 1408 ms 390736 KB Output is correct
35 Correct 1456 ms 386836 KB Output is correct
36 Correct 1472 ms 385592 KB Output is correct
37 Correct 1075 ms 378356 KB Output is correct
38 Correct 1102 ms 377180 KB Output is correct
39 Correct 880 ms 347692 KB Output is correct
40 Correct 867 ms 354780 KB Output is correct
41 Correct 1022 ms 335548 KB Output is correct
42 Correct 930 ms 338088 KB Output is correct
43 Correct 120 ms 228444 KB Output is correct
44 Correct 867 ms 333860 KB Output is correct
45 Correct 852 ms 324076 KB Output is correct
46 Correct 736 ms 307720 KB Output is correct
47 Correct 514 ms 301840 KB Output is correct
48 Correct 491 ms 297828 KB Output is correct
49 Correct 594 ms 310596 KB Output is correct
50 Correct 693 ms 328284 KB Output is correct
51 Correct 608 ms 307724 KB Output is correct
52 Correct 751 ms 367340 KB Output is correct
53 Correct 731 ms 368892 KB Output is correct
54 Correct 936 ms 372988 KB Output is correct
55 Correct 811 ms 350204 KB Output is correct
56 Correct 750 ms 355904 KB Output is correct
57 Correct 901 ms 341060 KB Output is correct
58 Correct 859 ms 352376 KB Output is correct
59 Correct 844 ms 357280 KB Output is correct
60 Correct 906 ms 341532 KB Output is correct
61 Correct 164 ms 250464 KB Output is correct
62 Correct 736 ms 368760 KB Output is correct
63 Correct 816 ms 365476 KB Output is correct
64 Correct 862 ms 366012 KB Output is correct
65 Correct 933 ms 359768 KB Output is correct
66 Correct 908 ms 343084 KB Output is correct
67 Correct 255 ms 249256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 41 ms 211800 KB Output is correct
2 Correct 42 ms 211812 KB Output is correct
3 Correct 40 ms 211660 KB Output is correct
4 Correct 42 ms 211800 KB Output is correct
5 Correct 42 ms 211804 KB Output is correct
6 Correct 44 ms 212488 KB Output is correct
7 Correct 51 ms 212356 KB Output is correct
8 Correct 43 ms 212312 KB Output is correct
9 Correct 42 ms 212316 KB Output is correct
10 Correct 51 ms 212592 KB Output is correct
11 Correct 42 ms 212316 KB Output is correct
12 Correct 52 ms 212316 KB Output is correct
13 Correct 45 ms 212048 KB Output is correct
14 Correct 42 ms 212216 KB Output is correct
15 Correct 45 ms 212312 KB Output is correct
16 Correct 42 ms 212316 KB Output is correct
17 Correct 47 ms 212232 KB Output is correct
18 Correct 44 ms 212608 KB Output is correct
19 Correct 44 ms 212316 KB Output is correct
20 Correct 44 ms 212308 KB Output is correct
21 Correct 42 ms 212064 KB Output is correct
22 Correct 51 ms 212308 KB Output is correct
23 Correct 45 ms 212304 KB Output is correct
24 Correct 51 ms 212312 KB Output is correct
25 Correct 55 ms 212256 KB Output is correct
26 Correct 45 ms 212052 KB Output is correct
27 Correct 52 ms 212064 KB Output is correct
28 Correct 43 ms 212292 KB Output is correct
29 Correct 43 ms 212060 KB Output is correct
30 Correct 49 ms 212056 KB Output is correct
31 Correct 1517 ms 385172 KB Output is correct
32 Correct 163 ms 229956 KB Output is correct
33 Correct 1425 ms 389084 KB Output is correct
34 Correct 1408 ms 390736 KB Output is correct
35 Correct 1456 ms 386836 KB Output is correct
36 Correct 1472 ms 385592 KB Output is correct
37 Correct 1075 ms 378356 KB Output is correct
38 Correct 1102 ms 377180 KB Output is correct
39 Correct 880 ms 347692 KB Output is correct
40 Correct 867 ms 354780 KB Output is correct
41 Correct 1022 ms 335548 KB Output is correct
42 Correct 930 ms 338088 KB Output is correct
43 Correct 120 ms 228444 KB Output is correct
44 Correct 867 ms 333860 KB Output is correct
45 Correct 852 ms 324076 KB Output is correct
46 Correct 736 ms 307720 KB Output is correct
47 Correct 514 ms 301840 KB Output is correct
48 Correct 491 ms 297828 KB Output is correct
49 Correct 594 ms 310596 KB Output is correct
50 Correct 693 ms 328284 KB Output is correct
51 Correct 608 ms 307724 KB Output is correct
52 Correct 2252 ms 931060 KB Output is correct
53 Correct 2189 ms 894748 KB Output is correct
54 Correct 2039 ms 914176 KB Output is correct
55 Correct 2205 ms 905520 KB Output is correct
56 Correct 2000 ms 901260 KB Output is correct
57 Correct 2195 ms 896196 KB Output is correct
58 Correct 2025 ms 950836 KB Output is correct
59 Correct 2184 ms 882164 KB Output is correct
60 Correct 2386 ms 895636 KB Output is correct
61 Correct 2466 ms 876896 KB Output is correct
62 Correct 2057 ms 882996 KB Output is correct
63 Correct 2340 ms 898272 KB Output is correct
64 Execution timed out 6501 ms 1048576 KB Time limit exceeded
65 Halted 0 ms 0 KB -