Submission #864896

# Submission time Handle Problem Language Result Execution time Memory
864896 2023-10-23T17:41:13 Z danikoynov New Home (APIO18_new_home) C++14
47 / 100
4064 ms 1048576 KB
#include<bits/stdc++.h>
#define endl '\n'
 
using namespace std;
typedef long long ll;
 
const int maxn = 6e5 + 10, inf = 1e9;
 
struct store
{
    int x, t, a, b;
}s[maxn];
 
struct query
{
    int l, y, idx;
}task[maxn];
 
int n, k, q;
 
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
 
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
 
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
 
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
 
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
 
    sort(cor.begin(), cor.end());
    int sz = cor.size();
 
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}

 
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
 
struct event
{
    int type, cor, add, arrive;
 
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
 
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
 
    if (e1.add != e2.add)
        return e1.add < e2.add;
 
    return e1.cor < e2.cor; /// could have dublicates
}
 
 
 
multiset < int > act[maxn];

struct interval_ray
{
    int s, e;
    pair < int, int > ray;

    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};

vector < interval_ray > seg_left, seg_right;

map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}

void make_right_segment(int start, int finish, int timer, int type)
{
    dat.push_back(ray_right[type][{start, finish}]);
    dat.push_back(timer - 1);
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}

void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
       
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }

    act[type].insert(cor);
}


void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;

        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;

    }
    else
    if (bef == -inf)
    {

        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;


    }
    else
    if (aft == inf)
    {

        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);

        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);

                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;

    }

    act[type].erase(it);
}
 
int ans[maxn];
 
vector < interval_ray > tree_left[maxn * 8], tree_right[maxn * 8];
int pt_lf[8 * maxn], bs_lf[8 * maxn];
int pt_rf[8 * maxn], bs_rf[8 * maxn];

bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);

}

unordered_map < int, int > event_times;

void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
 
    sort(events.begin(), events.end(), cmp_event);
 
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
 
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);

    for (event cur : events)
    {
        dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }

    dat.push_back(inf - 1);
    dat.push_back(inf);

    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);

    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }

    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }


    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }

    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    
    for (interval_ray cur : seg_left)
    {
        assert(event_times[cur.e] != 0 && event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    for (interval_ray cur : seg_right)
    {
        assert(event_times[cur.e] != 0 && event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;

        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
  
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;

        while(true)
        {

            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }

    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
 
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
 
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
 
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
 
 
 
 
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
 
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
 
1 1 1
100000000 1 1 1
1 1
 
 
 
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:323:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  323 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:424:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  424 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324556 KB Output is correct
2 Correct 65 ms 324452 KB Output is correct
3 Correct 64 ms 324444 KB Output is correct
4 Correct 65 ms 324580 KB Output is correct
5 Correct 68 ms 324728 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 65 ms 325200 KB Output is correct
8 Correct 69 ms 325368 KB Output is correct
9 Correct 69 ms 325320 KB Output is correct
10 Correct 68 ms 325432 KB Output is correct
11 Correct 67 ms 325056 KB Output is correct
12 Correct 67 ms 325212 KB Output is correct
13 Correct 66 ms 324948 KB Output is correct
14 Correct 69 ms 325100 KB Output is correct
15 Correct 66 ms 325168 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325204 KB Output is correct
18 Correct 67 ms 325264 KB Output is correct
19 Correct 70 ms 325192 KB Output is correct
20 Correct 67 ms 325276 KB Output is correct
21 Correct 66 ms 324688 KB Output is correct
22 Correct 66 ms 325384 KB Output is correct
23 Correct 67 ms 325332 KB Output is correct
24 Correct 70 ms 325324 KB Output is correct
25 Correct 71 ms 325112 KB Output is correct
26 Correct 67 ms 324944 KB Output is correct
27 Correct 65 ms 324692 KB Output is correct
28 Correct 66 ms 324956 KB Output is correct
29 Correct 67 ms 324944 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324556 KB Output is correct
2 Correct 65 ms 324452 KB Output is correct
3 Correct 64 ms 324444 KB Output is correct
4 Correct 65 ms 324580 KB Output is correct
5 Correct 68 ms 324728 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 65 ms 325200 KB Output is correct
8 Correct 69 ms 325368 KB Output is correct
9 Correct 69 ms 325320 KB Output is correct
10 Correct 68 ms 325432 KB Output is correct
11 Correct 67 ms 325056 KB Output is correct
12 Correct 67 ms 325212 KB Output is correct
13 Correct 66 ms 324948 KB Output is correct
14 Correct 69 ms 325100 KB Output is correct
15 Correct 66 ms 325168 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325204 KB Output is correct
18 Correct 67 ms 325264 KB Output is correct
19 Correct 70 ms 325192 KB Output is correct
20 Correct 67 ms 325276 KB Output is correct
21 Correct 66 ms 324688 KB Output is correct
22 Correct 66 ms 325384 KB Output is correct
23 Correct 67 ms 325332 KB Output is correct
24 Correct 70 ms 325324 KB Output is correct
25 Correct 71 ms 325112 KB Output is correct
26 Correct 67 ms 324944 KB Output is correct
27 Correct 65 ms 324692 KB Output is correct
28 Correct 66 ms 324956 KB Output is correct
29 Correct 67 ms 324944 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
31 Correct 1260 ms 496196 KB Output is correct
32 Correct 172 ms 340780 KB Output is correct
33 Correct 1260 ms 501980 KB Output is correct
34 Correct 1252 ms 499512 KB Output is correct
35 Correct 1281 ms 498952 KB Output is correct
36 Correct 1323 ms 498300 KB Output is correct
37 Correct 1020 ms 487200 KB Output is correct
38 Correct 1008 ms 485596 KB Output is correct
39 Correct 800 ms 462068 KB Output is correct
40 Correct 826 ms 466540 KB Output is correct
41 Correct 917 ms 445448 KB Output is correct
42 Correct 911 ms 447616 KB Output is correct
43 Correct 142 ms 339776 KB Output is correct
44 Correct 899 ms 443220 KB Output is correct
45 Correct 873 ms 435204 KB Output is correct
46 Correct 768 ms 417404 KB Output is correct
47 Correct 527 ms 412428 KB Output is correct
48 Correct 518 ms 408852 KB Output is correct
49 Correct 614 ms 422944 KB Output is correct
50 Correct 683 ms 438748 KB Output is correct
51 Correct 624 ms 416696 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2281 ms 975060 KB Output is correct
2 Correct 2258 ms 989932 KB Output is correct
3 Runtime error 1393 ms 1048576 KB Execution killed with signal 9
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Runtime error 4064 ms 1048576 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324556 KB Output is correct
2 Correct 65 ms 324452 KB Output is correct
3 Correct 64 ms 324444 KB Output is correct
4 Correct 65 ms 324580 KB Output is correct
5 Correct 68 ms 324728 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 65 ms 325200 KB Output is correct
8 Correct 69 ms 325368 KB Output is correct
9 Correct 69 ms 325320 KB Output is correct
10 Correct 68 ms 325432 KB Output is correct
11 Correct 67 ms 325056 KB Output is correct
12 Correct 67 ms 325212 KB Output is correct
13 Correct 66 ms 324948 KB Output is correct
14 Correct 69 ms 325100 KB Output is correct
15 Correct 66 ms 325168 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325204 KB Output is correct
18 Correct 67 ms 325264 KB Output is correct
19 Correct 70 ms 325192 KB Output is correct
20 Correct 67 ms 325276 KB Output is correct
21 Correct 66 ms 324688 KB Output is correct
22 Correct 66 ms 325384 KB Output is correct
23 Correct 67 ms 325332 KB Output is correct
24 Correct 70 ms 325324 KB Output is correct
25 Correct 71 ms 325112 KB Output is correct
26 Correct 67 ms 324944 KB Output is correct
27 Correct 65 ms 324692 KB Output is correct
28 Correct 66 ms 324956 KB Output is correct
29 Correct 67 ms 324944 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
31 Correct 1260 ms 496196 KB Output is correct
32 Correct 172 ms 340780 KB Output is correct
33 Correct 1260 ms 501980 KB Output is correct
34 Correct 1252 ms 499512 KB Output is correct
35 Correct 1281 ms 498952 KB Output is correct
36 Correct 1323 ms 498300 KB Output is correct
37 Correct 1020 ms 487200 KB Output is correct
38 Correct 1008 ms 485596 KB Output is correct
39 Correct 800 ms 462068 KB Output is correct
40 Correct 826 ms 466540 KB Output is correct
41 Correct 917 ms 445448 KB Output is correct
42 Correct 911 ms 447616 KB Output is correct
43 Correct 142 ms 339776 KB Output is correct
44 Correct 899 ms 443220 KB Output is correct
45 Correct 873 ms 435204 KB Output is correct
46 Correct 768 ms 417404 KB Output is correct
47 Correct 527 ms 412428 KB Output is correct
48 Correct 518 ms 408852 KB Output is correct
49 Correct 614 ms 422944 KB Output is correct
50 Correct 683 ms 438748 KB Output is correct
51 Correct 624 ms 416696 KB Output is correct
52 Correct 769 ms 478672 KB Output is correct
53 Correct 754 ms 478780 KB Output is correct
54 Correct 962 ms 482784 KB Output is correct
55 Correct 834 ms 462144 KB Output is correct
56 Correct 808 ms 468656 KB Output is correct
57 Correct 928 ms 451336 KB Output is correct
58 Correct 893 ms 463364 KB Output is correct
59 Correct 903 ms 466908 KB Output is correct
60 Correct 1000 ms 452676 KB Output is correct
61 Correct 199 ms 359888 KB Output is correct
62 Correct 883 ms 478712 KB Output is correct
63 Correct 1002 ms 476948 KB Output is correct
64 Correct 1069 ms 475416 KB Output is correct
65 Correct 1117 ms 472428 KB Output is correct
66 Correct 1155 ms 453872 KB Output is correct
67 Correct 321 ms 360984 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324556 KB Output is correct
2 Correct 65 ms 324452 KB Output is correct
3 Correct 64 ms 324444 KB Output is correct
4 Correct 65 ms 324580 KB Output is correct
5 Correct 68 ms 324728 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 65 ms 325200 KB Output is correct
8 Correct 69 ms 325368 KB Output is correct
9 Correct 69 ms 325320 KB Output is correct
10 Correct 68 ms 325432 KB Output is correct
11 Correct 67 ms 325056 KB Output is correct
12 Correct 67 ms 325212 KB Output is correct
13 Correct 66 ms 324948 KB Output is correct
14 Correct 69 ms 325100 KB Output is correct
15 Correct 66 ms 325168 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325204 KB Output is correct
18 Correct 67 ms 325264 KB Output is correct
19 Correct 70 ms 325192 KB Output is correct
20 Correct 67 ms 325276 KB Output is correct
21 Correct 66 ms 324688 KB Output is correct
22 Correct 66 ms 325384 KB Output is correct
23 Correct 67 ms 325332 KB Output is correct
24 Correct 70 ms 325324 KB Output is correct
25 Correct 71 ms 325112 KB Output is correct
26 Correct 67 ms 324944 KB Output is correct
27 Correct 65 ms 324692 KB Output is correct
28 Correct 66 ms 324956 KB Output is correct
29 Correct 67 ms 324944 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
31 Correct 1260 ms 496196 KB Output is correct
32 Correct 172 ms 340780 KB Output is correct
33 Correct 1260 ms 501980 KB Output is correct
34 Correct 1252 ms 499512 KB Output is correct
35 Correct 1281 ms 498952 KB Output is correct
36 Correct 1323 ms 498300 KB Output is correct
37 Correct 1020 ms 487200 KB Output is correct
38 Correct 1008 ms 485596 KB Output is correct
39 Correct 800 ms 462068 KB Output is correct
40 Correct 826 ms 466540 KB Output is correct
41 Correct 917 ms 445448 KB Output is correct
42 Correct 911 ms 447616 KB Output is correct
43 Correct 142 ms 339776 KB Output is correct
44 Correct 899 ms 443220 KB Output is correct
45 Correct 873 ms 435204 KB Output is correct
46 Correct 768 ms 417404 KB Output is correct
47 Correct 527 ms 412428 KB Output is correct
48 Correct 518 ms 408852 KB Output is correct
49 Correct 614 ms 422944 KB Output is correct
50 Correct 683 ms 438748 KB Output is correct
51 Correct 624 ms 416696 KB Output is correct
52 Correct 2281 ms 975060 KB Output is correct
53 Correct 2258 ms 989932 KB Output is correct
54 Runtime error 1393 ms 1048576 KB Execution killed with signal 9
55 Halted 0 ms 0 KB -