Submission #864892

# Submission time Handle Problem Language Result Execution time Memory
864892 2023-10-23T17:36:11 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
4132 ms 1048576 KB
#include<bits/stdc++.h>
#define endl '\n'
 
using namespace std;
typedef long long ll;
 
const int maxn = 6e5 + 10, inf = 1e9;
 
struct store
{
    int x, t, a, b;
}s[maxn];
 
struct query
{
    int l, y, idx;
}task[maxn];
 
int n, k, q;
 
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
 
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
 
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
 
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
 
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
 
    sort(cor.begin(), cor.end());
    int sz = cor.size();
 
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}

 
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
 
struct event
{
    int type, cor, add, arrive;
 
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
 
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
 
    if (e1.add != e2.add)
        return e1.add < e2.add;
 
    return e1.cor < e2.cor; /// could have dublicates
}
 
 
 
multiset < int > act[maxn];

struct interval_ray
{
    int s, e;
    pair < int, int > ray;

    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};

vector < interval_ray > seg_left, seg_right;

map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}

void make_right_segment(int start, int finish, int timer, int type)
{
    dat.push_back(ray_right[type][{start, finish}]);
    dat.push_back(timer - 1);
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}

void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
       
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }

    act[type].insert(cor);
}


void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;

        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;

    }
    else
    if (bef == -inf)
    {

        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;


    }
    else
    if (aft == inf)
    {

        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);

        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);

                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;

    }

    act[type].erase(it);
}
 
int ans[maxn];
 
vector < interval_ray > tree_left[maxn * 8], tree_right[maxn * 8];
int pt_lf[8 * maxn], bs_lf[8 * maxn];
int pt_rf[8 * maxn], bs_rf[8 * maxn];

bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);

}

unordered_map < int, int > event_times;

void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
 
    sort(events.begin(), events.end(), cmp_event);
 
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
 
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);

    for (event cur : events)
    {
        dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }

    dat.push_back(inf - 1);
    dat.push_back(inf);

    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);

    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }

    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }


    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }

    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    ///if (n > 6e4)
       /// exit(0);
    for (interval_ray cur : seg_left)
    {
        assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    for (interval_ray cur : seg_right)
    {
         assert(event_times[cur.e + 1] != 0);
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;

        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
  
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;

        while(true)
        {

            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }

    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
 
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
 
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
 
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
 
 
 
 
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
 
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
 
1 1 1
100000000 1 1 1
1 1
 
 
 
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:323:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  323 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:425:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  425 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324432 KB Output is correct
2 Correct 65 ms 324432 KB Output is correct
3 Correct 64 ms 324664 KB Output is correct
4 Correct 64 ms 324432 KB Output is correct
5 Correct 66 ms 324760 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 69 ms 325628 KB Output is correct
9 Correct 70 ms 325200 KB Output is correct
10 Correct 68 ms 325204 KB Output is correct
11 Correct 67 ms 324944 KB Output is correct
12 Correct 67 ms 325064 KB Output is correct
13 Correct 68 ms 325204 KB Output is correct
14 Correct 66 ms 325096 KB Output is correct
15 Correct 67 ms 325216 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325200 KB Output is correct
18 Correct 67 ms 325348 KB Output is correct
19 Correct 66 ms 325244 KB Output is correct
20 Correct 67 ms 325296 KB Output is correct
21 Correct 65 ms 324920 KB Output is correct
22 Correct 66 ms 325172 KB Output is correct
23 Correct 69 ms 325712 KB Output is correct
24 Correct 66 ms 325356 KB Output is correct
25 Correct 67 ms 325204 KB Output is correct
26 Correct 69 ms 325068 KB Output is correct
27 Correct 65 ms 324920 KB Output is correct
28 Correct 68 ms 324948 KB Output is correct
29 Correct 66 ms 325144 KB Output is correct
30 Correct 65 ms 324960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324432 KB Output is correct
2 Correct 65 ms 324432 KB Output is correct
3 Correct 64 ms 324664 KB Output is correct
4 Correct 64 ms 324432 KB Output is correct
5 Correct 66 ms 324760 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 69 ms 325628 KB Output is correct
9 Correct 70 ms 325200 KB Output is correct
10 Correct 68 ms 325204 KB Output is correct
11 Correct 67 ms 324944 KB Output is correct
12 Correct 67 ms 325064 KB Output is correct
13 Correct 68 ms 325204 KB Output is correct
14 Correct 66 ms 325096 KB Output is correct
15 Correct 67 ms 325216 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325200 KB Output is correct
18 Correct 67 ms 325348 KB Output is correct
19 Correct 66 ms 325244 KB Output is correct
20 Correct 67 ms 325296 KB Output is correct
21 Correct 65 ms 324920 KB Output is correct
22 Correct 66 ms 325172 KB Output is correct
23 Correct 69 ms 325712 KB Output is correct
24 Correct 66 ms 325356 KB Output is correct
25 Correct 67 ms 325204 KB Output is correct
26 Correct 69 ms 325068 KB Output is correct
27 Correct 65 ms 324920 KB Output is correct
28 Correct 68 ms 324948 KB Output is correct
29 Correct 66 ms 325144 KB Output is correct
30 Correct 65 ms 324960 KB Output is correct
31 Correct 1264 ms 501192 KB Output is correct
32 Correct 173 ms 344860 KB Output is correct
33 Correct 1278 ms 504800 KB Output is correct
34 Correct 1234 ms 502260 KB Output is correct
35 Correct 1278 ms 498660 KB Output is correct
36 Correct 1328 ms 498920 KB Output is correct
37 Correct 1010 ms 490448 KB Output is correct
38 Correct 1010 ms 488888 KB Output is correct
39 Correct 834 ms 461316 KB Output is correct
40 Correct 834 ms 471960 KB Output is correct
41 Correct 923 ms 449040 KB Output is correct
42 Correct 932 ms 449796 KB Output is correct
43 Correct 144 ms 341264 KB Output is correct
44 Correct 917 ms 445740 KB Output is correct
45 Correct 884 ms 437160 KB Output is correct
46 Correct 883 ms 420512 KB Output is correct
47 Correct 537 ms 415248 KB Output is correct
48 Correct 543 ms 411964 KB Output is correct
49 Correct 615 ms 424296 KB Output is correct
50 Correct 679 ms 441724 KB Output is correct
51 Correct 622 ms 419952 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2349 ms 1029112 KB Output is correct
2 Correct 2235 ms 1022952 KB Output is correct
3 Correct 2090 ms 1036512 KB Output is correct
4 Correct 2253 ms 1016788 KB Output is correct
5 Correct 2041 ms 1018984 KB Output is correct
6 Correct 2206 ms 1014920 KB Output is correct
7 Correct 2053 ms 1040456 KB Output is correct
8 Correct 2198 ms 1029904 KB Output is correct
9 Correct 2444 ms 1003996 KB Output is correct
10 Correct 2533 ms 1031464 KB Output is correct
11 Correct 2035 ms 1026164 KB Output is correct
12 Correct 2345 ms 1031048 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 4132 ms 1048576 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324432 KB Output is correct
2 Correct 65 ms 324432 KB Output is correct
3 Correct 64 ms 324664 KB Output is correct
4 Correct 64 ms 324432 KB Output is correct
5 Correct 66 ms 324760 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 69 ms 325628 KB Output is correct
9 Correct 70 ms 325200 KB Output is correct
10 Correct 68 ms 325204 KB Output is correct
11 Correct 67 ms 324944 KB Output is correct
12 Correct 67 ms 325064 KB Output is correct
13 Correct 68 ms 325204 KB Output is correct
14 Correct 66 ms 325096 KB Output is correct
15 Correct 67 ms 325216 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325200 KB Output is correct
18 Correct 67 ms 325348 KB Output is correct
19 Correct 66 ms 325244 KB Output is correct
20 Correct 67 ms 325296 KB Output is correct
21 Correct 65 ms 324920 KB Output is correct
22 Correct 66 ms 325172 KB Output is correct
23 Correct 69 ms 325712 KB Output is correct
24 Correct 66 ms 325356 KB Output is correct
25 Correct 67 ms 325204 KB Output is correct
26 Correct 69 ms 325068 KB Output is correct
27 Correct 65 ms 324920 KB Output is correct
28 Correct 68 ms 324948 KB Output is correct
29 Correct 66 ms 325144 KB Output is correct
30 Correct 65 ms 324960 KB Output is correct
31 Correct 1264 ms 501192 KB Output is correct
32 Correct 173 ms 344860 KB Output is correct
33 Correct 1278 ms 504800 KB Output is correct
34 Correct 1234 ms 502260 KB Output is correct
35 Correct 1278 ms 498660 KB Output is correct
36 Correct 1328 ms 498920 KB Output is correct
37 Correct 1010 ms 490448 KB Output is correct
38 Correct 1010 ms 488888 KB Output is correct
39 Correct 834 ms 461316 KB Output is correct
40 Correct 834 ms 471960 KB Output is correct
41 Correct 923 ms 449040 KB Output is correct
42 Correct 932 ms 449796 KB Output is correct
43 Correct 144 ms 341264 KB Output is correct
44 Correct 917 ms 445740 KB Output is correct
45 Correct 884 ms 437160 KB Output is correct
46 Correct 883 ms 420512 KB Output is correct
47 Correct 537 ms 415248 KB Output is correct
48 Correct 543 ms 411964 KB Output is correct
49 Correct 615 ms 424296 KB Output is correct
50 Correct 679 ms 441724 KB Output is correct
51 Correct 622 ms 419952 KB Output is correct
52 Correct 772 ms 477944 KB Output is correct
53 Correct 752 ms 479780 KB Output is correct
54 Correct 940 ms 483016 KB Output is correct
55 Correct 832 ms 462328 KB Output is correct
56 Correct 776 ms 466684 KB Output is correct
57 Correct 909 ms 451424 KB Output is correct
58 Correct 881 ms 461232 KB Output is correct
59 Correct 846 ms 466684 KB Output is correct
60 Correct 925 ms 452348 KB Output is correct
61 Correct 187 ms 360284 KB Output is correct
62 Correct 783 ms 478664 KB Output is correct
63 Correct 840 ms 476296 KB Output is correct
64 Correct 928 ms 476804 KB Output is correct
65 Correct 919 ms 471748 KB Output is correct
66 Correct 944 ms 454144 KB Output is correct
67 Correct 283 ms 362716 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 64 ms 324432 KB Output is correct
2 Correct 65 ms 324432 KB Output is correct
3 Correct 64 ms 324664 KB Output is correct
4 Correct 64 ms 324432 KB Output is correct
5 Correct 66 ms 324760 KB Output is correct
6 Correct 67 ms 325204 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 69 ms 325628 KB Output is correct
9 Correct 70 ms 325200 KB Output is correct
10 Correct 68 ms 325204 KB Output is correct
11 Correct 67 ms 324944 KB Output is correct
12 Correct 67 ms 325064 KB Output is correct
13 Correct 68 ms 325204 KB Output is correct
14 Correct 66 ms 325096 KB Output is correct
15 Correct 67 ms 325216 KB Output is correct
16 Correct 67 ms 325204 KB Output is correct
17 Correct 66 ms 325200 KB Output is correct
18 Correct 67 ms 325348 KB Output is correct
19 Correct 66 ms 325244 KB Output is correct
20 Correct 67 ms 325296 KB Output is correct
21 Correct 65 ms 324920 KB Output is correct
22 Correct 66 ms 325172 KB Output is correct
23 Correct 69 ms 325712 KB Output is correct
24 Correct 66 ms 325356 KB Output is correct
25 Correct 67 ms 325204 KB Output is correct
26 Correct 69 ms 325068 KB Output is correct
27 Correct 65 ms 324920 KB Output is correct
28 Correct 68 ms 324948 KB Output is correct
29 Correct 66 ms 325144 KB Output is correct
30 Correct 65 ms 324960 KB Output is correct
31 Correct 1264 ms 501192 KB Output is correct
32 Correct 173 ms 344860 KB Output is correct
33 Correct 1278 ms 504800 KB Output is correct
34 Correct 1234 ms 502260 KB Output is correct
35 Correct 1278 ms 498660 KB Output is correct
36 Correct 1328 ms 498920 KB Output is correct
37 Correct 1010 ms 490448 KB Output is correct
38 Correct 1010 ms 488888 KB Output is correct
39 Correct 834 ms 461316 KB Output is correct
40 Correct 834 ms 471960 KB Output is correct
41 Correct 923 ms 449040 KB Output is correct
42 Correct 932 ms 449796 KB Output is correct
43 Correct 144 ms 341264 KB Output is correct
44 Correct 917 ms 445740 KB Output is correct
45 Correct 884 ms 437160 KB Output is correct
46 Correct 883 ms 420512 KB Output is correct
47 Correct 537 ms 415248 KB Output is correct
48 Correct 543 ms 411964 KB Output is correct
49 Correct 615 ms 424296 KB Output is correct
50 Correct 679 ms 441724 KB Output is correct
51 Correct 622 ms 419952 KB Output is correct
52 Correct 2349 ms 1029112 KB Output is correct
53 Correct 2235 ms 1022952 KB Output is correct
54 Correct 2090 ms 1036512 KB Output is correct
55 Correct 2253 ms 1016788 KB Output is correct
56 Correct 2041 ms 1018984 KB Output is correct
57 Correct 2206 ms 1014920 KB Output is correct
58 Correct 2053 ms 1040456 KB Output is correct
59 Correct 2198 ms 1029904 KB Output is correct
60 Correct 2444 ms 1003996 KB Output is correct
61 Correct 2533 ms 1031464 KB Output is correct
62 Correct 2035 ms 1026164 KB Output is correct
63 Correct 2345 ms 1031048 KB Output is correct
64 Runtime error 4132 ms 1048576 KB Execution killed with signal 9
65 Halted 0 ms 0 KB -