Submission #864890

# Submission time Handle Problem Language Result Execution time Memory
864890 2023-10-23T17:33:54 Z danikoynov New Home (APIO18_new_home) C++14
57 / 100
4621 ms 1048576 KB
#include<bits/stdc++.h>
#define endl '\n'
 
using namespace std;
typedef long long ll;
 
const int maxn = 6e5 + 10, inf = 1e9;
 
struct store
{
    int x, t, a, b;
}s[maxn];
 
struct query
{
    int l, y, idx;
}task[maxn];
 
int n, k, q;
 
void input()
{
    cin >> n >> k >> q;
    for (int i = 1; i <= n; i ++)
        cin >> s[i].x >> s[i].t >> s[i].a >> s[i].b;
 
    for (int i = 1; i <= q; i ++)
        cin >> task[i].l >> task[i].y, task[i].idx = i;
}
 
unordered_map < int, int > rev;
int dif, back_to[2 * maxn];
 
int get_mid(int left, int right)
{
    if (left == right)
        return rev[left];
    
    int lf = rev[left], rf = rev[right];
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (abs(left - back_to[mf]) <= abs(right - back_to[mf]))
            lf = mf + 1;
        else
            rf = mf - 1;
    }
 
    return rf;
}
void compress_data()
{
    vector < int > cor;
    for (int i = 1; i <= n; i ++)
        cor.push_back(s[i].x);
    for (int i = 1; i <= q; i ++)
        cor.push_back(task[i].l);
 
    sort(cor.begin(), cor.end());
    int sz = cor.size();
 
    for (int i = 0; i < cor.size(); i ++)
    {
        if (i != 0 || cor[i - 1] != cor[i])
        {
            dif ++;
            rev[cor[i]] = dif;
            back_to[dif] = cor[i];
        }
    }
}

 
bool cmp_query(query t1, query t2)
{
    return t1.l < t2.l;
}
 
struct event
{
    int type, cor, add, arrive;
 
    event(int _type, int _cor, int _add, int _arrive)
    {
        type = _type;
        cor = _cor;
        add = _add;
        arrive = _arrive;
    }
};
 
bool cmp_event(event e1, event e2)
{
    if (e1.arrive != e2.arrive)
        return e1.arrive < e2.arrive;
 
    if (e1.add != e2.add)
        return e1.add < e2.add;
 
    return e1.cor < e2.cor; /// could have dublicates
}
 
 
 
multiset < int > act[maxn];

struct interval_ray
{
    int s, e;
    pair < int, int > ray;

    interval_ray(int _s, int _e, pair < int, int > _ray)
    {
        s = _s;
        e = _e;
        ray = _ray;
    }
};

vector < interval_ray > seg_left, seg_right;

map < pair < int, int >, int > ray_right[maxn], ray_left[maxn];
    vector < int > dat;
void make_left_segment(int start, int finish, int timer, int type)
{
    ///cout << "left " << start << " " << finish << " " << timer << endl;
    seg_left.push_back(interval_ray(ray_left[type][{start, finish}], timer - 1, {start, finish}));
    ray_left[type][{start, finish}] = 0;
}

void make_right_segment(int start, int finish, int timer, int type)
{
    dat.push_back(ray_right[type][{start, finish}]);
    dat.push_back(timer - 1);
    seg_right.push_back(interval_ray(ray_right[type][{start, finish}], timer - 1, {start, finish}));
    ray_right[type][{start, finish}] = 0;
}

void add_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].upper_bound(cor);
    int aft = *it;
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
       
        make_right_segment(-inf, inf, timer, type);
        ray_left[type][{cor, -inf}] = timer;
        ray_right[type][{cor, +inf}] = timer;
    }
    else
    if (bef == - inf)
    {
        make_left_segment(aft, -inf, timer, type);
        int mid = (cor + aft) / 2;
        ray_right[type][{cor, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;
        ray_left[type][{cor, -inf}] = timer;
    }
    else
    if (aft == inf)
    {
        make_right_segment(bef, inf, timer, type);
        int mid = (bef + cor) / 2;
        ray_left[type][{cor, mid + 1}] = timer;
        ray_right[type][{bef, mid}] = timer;
        ray_right[type][{cor, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        make_right_segment(bef, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
        int mid_left = (bef + cor) / 2;
        ray_right[type][{bef, mid_left}] = timer;
        ray_left[type][{cor, mid_left + 1}] = timer;
        int mid_right = (cor + aft) / 2;
        ray_right[type][{cor, mid_right}] = timer;
        ray_left[type][{aft, mid_right + 1}] = timer;
    }

    act[type].insert(cor);
}


void remove_event(int type, int cor, int timer)
{
    multiset < int > :: iterator it = act[type].find(cor);
    int aft = *next(it);
    int bef = *prev(it);
    
    if (bef == -inf && aft == inf)
    {
        ///cout << "reverse " << timer << endl;

        make_left_segment(cor, -inf, timer, type);
        make_right_segment(cor, +inf, timer, type);
        ray_right[type][{-inf, inf}] = timer;

    }
    else
    if (bef == -inf)
    {

        ///cout << "step " << timer << endl;
        make_left_segment(cor, -inf, timer, type);
        int mid = (cor + aft) / 2;
        make_right_segment(cor, mid, timer, type);
        make_left_segment(aft, mid + 1, timer, type);
                ray_left[type][{aft, -inf}] = timer;


    }
    else
    if (aft == inf)
    {

        make_right_segment(cor, inf, timer, type);
        int mid = (bef + cor) / 2;
        make_left_segment(cor, mid + 1, timer, type);
        make_right_segment(bef, mid, timer, type);
                ray_right[type][{bef, inf}] = timer;
    }
    else
    {
        int mid = (bef + aft) / 2;
        ///assert((ray_right[type][{bef, mid}]) == 0);
        ///assert((ray_left[type][{aft, mid + 1}]) == 0);

        int mid_left = (bef + cor) / 2;
        make_right_segment(bef, mid_left, timer, type);
        make_left_segment(cor, mid_left + 1, timer, type);
        int mid_right = (aft + cor) / 2;
        make_right_segment(cor, mid_right, timer, type);
        make_left_segment(aft, mid_right + 1, timer, type);

                ray_right[type][{bef, mid}] = timer;
        ray_left[type][{aft, mid + 1}] = timer;

    }

    act[type].erase(it);
}
 
int ans[maxn];
 
vector < interval_ray > tree_left[maxn * 8], tree_right[maxn * 8];
int pt_lf[8 * maxn], bs_lf[8 * maxn];
int pt_rf[8 * maxn], bs_rf[8 * maxn];

bool cmp_ray_second(interval_ray r1, interval_ray r2)
{
    return r1.ray.second < r2.ray.second;
}
void update_range(int root, int left, int right, int qleft, int qright, interval_ray &ray, int type)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        if (type == -1)
            tree_left[root].push_back(ray);
        else
            tree_right[root].push_back(ray);
        return;
    }

    int mid = (left + right) / 2;
    update_range(root * 2, left, mid, qleft, qright, ray, type);
    update_range(root * 2 + 1, mid + 1, right, qleft, qright, ray, type);

}

unordered_map < int, int > event_times;

void answer_queries()
{
    sort(task + 1, task + q + 1, cmp_query);
    
    vector < event > events;
    for (int i = 1; i <= n; i ++)
    {
        events.push_back(event(s[i].t, s[i].x, 1, s[i].a));
        events.push_back(event(s[i].t, s[i].x, -1, s[i].b + 1));
    }
 
    sort(events.begin(), events.end(), cmp_event);
 
    for (int i = 1; i <= k; i ++)
    {
        act[i].insert(-inf);
        act[i].insert(inf);
        ray_right[i][{-inf, inf}] = 1;
    }
 
    
    int cnt = 0;
    dat.push_back(1);
    dat.push_back(0);

    for (event cur : events)
    {
        dat.push_back(cur.arrive - 1);
        dat.push_back(cur.arrive);
        ///cout << "event " << cur.arrive << " " << cur.add << " " << cur.cor << " " << cur.type << endl;
        if (cur.add == 1)
            add_event(cur.type, cur.cor, cur.arrive);
        else
            remove_event(cur.type, cur.cor, cur.arrive);
    }

    dat.push_back(inf - 1);
    dat.push_back(inf);

    for (int i = 1; i <= q; i ++)
        dat.push_back(task[i].y);

    sort(dat.begin(), dat.end());
    cnt ++;
    event_times[dat[0]] = cnt;
    for (int i = 1; i < dat.size(); i ++)
    {
        if (dat[i] == dat[i - 1])
            continue;
        cnt ++;
        event_times[dat[i]] = cnt;
    }

    map < pair < int, int >, int > :: iterator it;
    for (int i = 1; i <= k; i ++)
        for (it = ray_right[i].begin(); it != ray_right[i].end(); it ++)
        {
            ///cout << it -> first.first << " :: " << it -> first.second << " " << it -> second << endl;
            if (it -> second != 0)
                make_right_segment(it -> first.first, it -> first.second, inf, i);
        }


    for (int i = 1; i <= k; i ++)
        for (it = ray_left[i].begin(); it != ray_left[i].end(); it ++)
        {
            if (it -> second != 0)
            {
            ///cout << "here " << endl;
                make_left_segment(it -> first.first, it -> first.second, inf, i);
            }
        }

    sort(seg_right.begin(), seg_right.end(), cmp_ray_second);
    sort(seg_left.begin(), seg_left.end(), cmp_ray_second);
    ///if (n > 6e4)
       /// exit(0);
    for (interval_ray cur : seg_left)
    {
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, -1);
    ///    cout << "left ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    for (interval_ray cur : seg_right)
    {
        update_range(1, 1, cnt, event_times[cur.s], event_times[cur.e], cur, 1);
        ///cout << "right ray " << cur.s << " " << cur.e << " " << cur.ray.first << " " << cur.ray.second << endl;
    }

    
    for (int i = 1; i <= 4 * cnt; i ++)
    {
        pt_rf[i] = (int)(tree_right[i].size()) - 1;
        bs_rf[i] = inf;

        pt_lf[i] = 0;
        bs_lf[i] = -inf;
        ///sort(tree_right[i].begin(), tree_right[i].end(), cmp_ray_second);
        ///sort(tree_left[i].begin(), tree_left[i].end(), cmp_ray_second);
    }
  
    for (int i = q; i > 0; i --)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;

        while(true)
        {

            while(pt_rf[root] >= 0 && task[i].l <= tree_right[root][pt_rf[root]].ray.second)
            {
                bs_rf[root] = min(bs_rf[root], tree_right[root][pt_rf[root]].ray.first);
                pt_rf[root] --;
            }
            longest = max(longest, task[i].l - bs_rf[root]);


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }

    for (int i = 1; i <= q; i ++)
    {
        int longest = 0;
        int pos = event_times[task[i].y];
        int root = 1, left = 1, right = cnt;
        while(true)
        {
            ///cout << "step " << root << " " << left << " " << right << endl;
            while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
            {
                bs_lf[root] = max(bs_lf[root], tree_left[root][pt_lf[root]].ray.first);
                pt_lf[root] ++;
            }
            longest = max(longest, bs_lf[root] - task[i].l);
            /**for (interval_ray cur : tree_left[root])
            {
                if (task[i].l >= cur.ray.second)
                    longest = max(longest, cur.ray.first - task[i].l);
            }*/


            if (left == right)
                break;

            int mid = (left + right) / 2;
            if (pos <= mid)
            {
                root *= 2;
                right = mid;
            }
            else
            {
                root = root * 2 + 1;
                left = mid + 1;
            }
        }

        ans[task[i].idx] = max(ans[task[i].idx], longest);
    }
 
    for (int i = 1; i <= q; i ++)
    {
        if (ans[i] > 2e8)
            cout << -1 << endl;
        else
            cout << ans[i] << endl;
    }
}
void solve()
{
    input();
    compress_data();
    answer_queries();
}
 
void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}
int main()
{
    speed();
    solve();
    return 0;
}
 
/**
2 1 2
3 1 1 3
5 1 3 4
3 3
3 4
 
 
 
 
4 2 4
3 1 1 10
9 2 2 4
7 2 5 7
4 1 8 10
5 3
5 6
5 9
1 10
 
2 1 3
1 1 1 4
1 1 2 6
1 3
1 5
1 7
 
1 1 1
100000000 1 1 1
1 1
 
 
 
*/

Compilation message

new_home.cpp: In function 'void compress_data()':
new_home.cpp:62:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   62 |     for (int i = 0; i < cor.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:60:9: warning: unused variable 'sz' [-Wunused-variable]
   60 |     int sz = cor.size();
      |         ^~
new_home.cpp: In function 'void answer_queries()':
new_home.cpp:323:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  323 |     for (int i = 1; i < dat.size(); i ++)
      |                     ~~^~~~~~~~~~~~
new_home.cpp:423:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<interval_ray>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  423 |             while(pt_lf[root] < tree_left[root].size() && tree_left[root][pt_lf[root]].ray.second <= task[i].l)
      |                   ~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324432 KB Output is correct
2 Correct 63 ms 324436 KB Output is correct
3 Correct 65 ms 324432 KB Output is correct
4 Correct 64 ms 324568 KB Output is correct
5 Correct 66 ms 324692 KB Output is correct
6 Correct 68 ms 325200 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 67 ms 325208 KB Output is correct
9 Correct 67 ms 325208 KB Output is correct
10 Correct 68 ms 325448 KB Output is correct
11 Correct 66 ms 325120 KB Output is correct
12 Correct 67 ms 325260 KB Output is correct
13 Correct 65 ms 324944 KB Output is correct
14 Correct 68 ms 324952 KB Output is correct
15 Correct 66 ms 325200 KB Output is correct
16 Correct 66 ms 325200 KB Output is correct
17 Correct 65 ms 325200 KB Output is correct
18 Correct 66 ms 325200 KB Output is correct
19 Correct 67 ms 325268 KB Output is correct
20 Correct 67 ms 325392 KB Output is correct
21 Correct 65 ms 324692 KB Output is correct
22 Correct 67 ms 325168 KB Output is correct
23 Correct 67 ms 325352 KB Output is correct
24 Correct 66 ms 325136 KB Output is correct
25 Correct 72 ms 325200 KB Output is correct
26 Correct 65 ms 325080 KB Output is correct
27 Correct 66 ms 324944 KB Output is correct
28 Correct 69 ms 324952 KB Output is correct
29 Correct 69 ms 324988 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324432 KB Output is correct
2 Correct 63 ms 324436 KB Output is correct
3 Correct 65 ms 324432 KB Output is correct
4 Correct 64 ms 324568 KB Output is correct
5 Correct 66 ms 324692 KB Output is correct
6 Correct 68 ms 325200 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 67 ms 325208 KB Output is correct
9 Correct 67 ms 325208 KB Output is correct
10 Correct 68 ms 325448 KB Output is correct
11 Correct 66 ms 325120 KB Output is correct
12 Correct 67 ms 325260 KB Output is correct
13 Correct 65 ms 324944 KB Output is correct
14 Correct 68 ms 324952 KB Output is correct
15 Correct 66 ms 325200 KB Output is correct
16 Correct 66 ms 325200 KB Output is correct
17 Correct 65 ms 325200 KB Output is correct
18 Correct 66 ms 325200 KB Output is correct
19 Correct 67 ms 325268 KB Output is correct
20 Correct 67 ms 325392 KB Output is correct
21 Correct 65 ms 324692 KB Output is correct
22 Correct 67 ms 325168 KB Output is correct
23 Correct 67 ms 325352 KB Output is correct
24 Correct 66 ms 325136 KB Output is correct
25 Correct 72 ms 325200 KB Output is correct
26 Correct 65 ms 325080 KB Output is correct
27 Correct 66 ms 324944 KB Output is correct
28 Correct 69 ms 324952 KB Output is correct
29 Correct 69 ms 324988 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
31 Correct 1324 ms 500792 KB Output is correct
32 Correct 174 ms 344428 KB Output is correct
33 Correct 1303 ms 502632 KB Output is correct
34 Correct 1269 ms 500364 KB Output is correct
35 Correct 1263 ms 501528 KB Output is correct
36 Correct 1317 ms 500456 KB Output is correct
37 Correct 1050 ms 489812 KB Output is correct
38 Correct 1060 ms 488472 KB Output is correct
39 Correct 803 ms 463824 KB Output is correct
40 Correct 850 ms 468728 KB Output is correct
41 Correct 913 ms 448176 KB Output is correct
42 Correct 899 ms 450640 KB Output is correct
43 Correct 141 ms 341340 KB Output is correct
44 Correct 893 ms 446444 KB Output is correct
45 Correct 856 ms 438152 KB Output is correct
46 Correct 796 ms 420452 KB Output is correct
47 Correct 542 ms 415188 KB Output is correct
48 Correct 518 ms 411876 KB Output is correct
49 Correct 615 ms 424064 KB Output is correct
50 Correct 676 ms 441404 KB Output is correct
51 Correct 666 ms 420284 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2317 ms 999960 KB Output is correct
2 Correct 2353 ms 1013608 KB Output is correct
3 Correct 2294 ms 1048576 KB Output is correct
4 Correct 2495 ms 1020088 KB Output is correct
5 Correct 2171 ms 1013016 KB Output is correct
6 Correct 2349 ms 1021544 KB Output is correct
7 Correct 2155 ms 1048576 KB Output is correct
8 Correct 2398 ms 1011520 KB Output is correct
9 Correct 2519 ms 1029008 KB Output is correct
10 Correct 2721 ms 1005544 KB Output is correct
11 Correct 2211 ms 993236 KB Output is correct
12 Correct 2471 ms 1030448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 4621 ms 1048576 KB Execution killed with signal 9
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324432 KB Output is correct
2 Correct 63 ms 324436 KB Output is correct
3 Correct 65 ms 324432 KB Output is correct
4 Correct 64 ms 324568 KB Output is correct
5 Correct 66 ms 324692 KB Output is correct
6 Correct 68 ms 325200 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 67 ms 325208 KB Output is correct
9 Correct 67 ms 325208 KB Output is correct
10 Correct 68 ms 325448 KB Output is correct
11 Correct 66 ms 325120 KB Output is correct
12 Correct 67 ms 325260 KB Output is correct
13 Correct 65 ms 324944 KB Output is correct
14 Correct 68 ms 324952 KB Output is correct
15 Correct 66 ms 325200 KB Output is correct
16 Correct 66 ms 325200 KB Output is correct
17 Correct 65 ms 325200 KB Output is correct
18 Correct 66 ms 325200 KB Output is correct
19 Correct 67 ms 325268 KB Output is correct
20 Correct 67 ms 325392 KB Output is correct
21 Correct 65 ms 324692 KB Output is correct
22 Correct 67 ms 325168 KB Output is correct
23 Correct 67 ms 325352 KB Output is correct
24 Correct 66 ms 325136 KB Output is correct
25 Correct 72 ms 325200 KB Output is correct
26 Correct 65 ms 325080 KB Output is correct
27 Correct 66 ms 324944 KB Output is correct
28 Correct 69 ms 324952 KB Output is correct
29 Correct 69 ms 324988 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
31 Correct 1324 ms 500792 KB Output is correct
32 Correct 174 ms 344428 KB Output is correct
33 Correct 1303 ms 502632 KB Output is correct
34 Correct 1269 ms 500364 KB Output is correct
35 Correct 1263 ms 501528 KB Output is correct
36 Correct 1317 ms 500456 KB Output is correct
37 Correct 1050 ms 489812 KB Output is correct
38 Correct 1060 ms 488472 KB Output is correct
39 Correct 803 ms 463824 KB Output is correct
40 Correct 850 ms 468728 KB Output is correct
41 Correct 913 ms 448176 KB Output is correct
42 Correct 899 ms 450640 KB Output is correct
43 Correct 141 ms 341340 KB Output is correct
44 Correct 893 ms 446444 KB Output is correct
45 Correct 856 ms 438152 KB Output is correct
46 Correct 796 ms 420452 KB Output is correct
47 Correct 542 ms 415188 KB Output is correct
48 Correct 518 ms 411876 KB Output is correct
49 Correct 615 ms 424064 KB Output is correct
50 Correct 676 ms 441404 KB Output is correct
51 Correct 666 ms 420284 KB Output is correct
52 Correct 838 ms 480188 KB Output is correct
53 Correct 826 ms 482044 KB Output is correct
54 Correct 974 ms 485216 KB Output is correct
55 Correct 902 ms 465868 KB Output is correct
56 Correct 835 ms 470988 KB Output is correct
57 Correct 935 ms 453624 KB Output is correct
58 Correct 966 ms 465144 KB Output is correct
59 Correct 919 ms 470004 KB Output is correct
60 Correct 1022 ms 455860 KB Output is correct
61 Correct 194 ms 363452 KB Output is correct
62 Correct 890 ms 481600 KB Output is correct
63 Correct 977 ms 478984 KB Output is correct
64 Correct 977 ms 480068 KB Output is correct
65 Correct 1069 ms 473888 KB Output is correct
66 Correct 1090 ms 457112 KB Output is correct
67 Correct 307 ms 361308 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 66 ms 324432 KB Output is correct
2 Correct 63 ms 324436 KB Output is correct
3 Correct 65 ms 324432 KB Output is correct
4 Correct 64 ms 324568 KB Output is correct
5 Correct 66 ms 324692 KB Output is correct
6 Correct 68 ms 325200 KB Output is correct
7 Correct 67 ms 325200 KB Output is correct
8 Correct 67 ms 325208 KB Output is correct
9 Correct 67 ms 325208 KB Output is correct
10 Correct 68 ms 325448 KB Output is correct
11 Correct 66 ms 325120 KB Output is correct
12 Correct 67 ms 325260 KB Output is correct
13 Correct 65 ms 324944 KB Output is correct
14 Correct 68 ms 324952 KB Output is correct
15 Correct 66 ms 325200 KB Output is correct
16 Correct 66 ms 325200 KB Output is correct
17 Correct 65 ms 325200 KB Output is correct
18 Correct 66 ms 325200 KB Output is correct
19 Correct 67 ms 325268 KB Output is correct
20 Correct 67 ms 325392 KB Output is correct
21 Correct 65 ms 324692 KB Output is correct
22 Correct 67 ms 325168 KB Output is correct
23 Correct 67 ms 325352 KB Output is correct
24 Correct 66 ms 325136 KB Output is correct
25 Correct 72 ms 325200 KB Output is correct
26 Correct 65 ms 325080 KB Output is correct
27 Correct 66 ms 324944 KB Output is correct
28 Correct 69 ms 324952 KB Output is correct
29 Correct 69 ms 324988 KB Output is correct
30 Correct 66 ms 324944 KB Output is correct
31 Correct 1324 ms 500792 KB Output is correct
32 Correct 174 ms 344428 KB Output is correct
33 Correct 1303 ms 502632 KB Output is correct
34 Correct 1269 ms 500364 KB Output is correct
35 Correct 1263 ms 501528 KB Output is correct
36 Correct 1317 ms 500456 KB Output is correct
37 Correct 1050 ms 489812 KB Output is correct
38 Correct 1060 ms 488472 KB Output is correct
39 Correct 803 ms 463824 KB Output is correct
40 Correct 850 ms 468728 KB Output is correct
41 Correct 913 ms 448176 KB Output is correct
42 Correct 899 ms 450640 KB Output is correct
43 Correct 141 ms 341340 KB Output is correct
44 Correct 893 ms 446444 KB Output is correct
45 Correct 856 ms 438152 KB Output is correct
46 Correct 796 ms 420452 KB Output is correct
47 Correct 542 ms 415188 KB Output is correct
48 Correct 518 ms 411876 KB Output is correct
49 Correct 615 ms 424064 KB Output is correct
50 Correct 676 ms 441404 KB Output is correct
51 Correct 666 ms 420284 KB Output is correct
52 Correct 2317 ms 999960 KB Output is correct
53 Correct 2353 ms 1013608 KB Output is correct
54 Correct 2294 ms 1048576 KB Output is correct
55 Correct 2495 ms 1020088 KB Output is correct
56 Correct 2171 ms 1013016 KB Output is correct
57 Correct 2349 ms 1021544 KB Output is correct
58 Correct 2155 ms 1048576 KB Output is correct
59 Correct 2398 ms 1011520 KB Output is correct
60 Correct 2519 ms 1029008 KB Output is correct
61 Correct 2721 ms 1005544 KB Output is correct
62 Correct 2211 ms 993236 KB Output is correct
63 Correct 2471 ms 1030448 KB Output is correct
64 Runtime error 4621 ms 1048576 KB Execution killed with signal 9
65 Halted 0 ms 0 KB -