Submission #86005

# Submission time Handle Problem Language Result Execution time Memory
86005 2018-11-24T00:04:44 Z qkxwsm parentrises (BOI18_parentrises) C++14
100 / 100
87 ms 10580 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;

random_device(rd);
mt19937 rng(rd());
const long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count();

struct custom_hash
{
	template<class T>
	unsigned long long operator()(T v) const
	{
		unsigned long long x = v;
		x += FIXED_RANDOM; x += 11400714819323198485ull;
		x = (x ^ (x >> 30)) * 13787848793156543929ull;
		x = (x ^ (x >> 27)) * 10723151780598845931ull;
		return x ^ (x >> 31);
	}
};

template<class T> using ordered_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<class T, class U> using hash_table = gp_hash_table<T, U, custom_hash>;

template<class T>
void readi(T &x)
{
	x = 0;
	bool negative = false;
	char c = ' ';
	while (c < '-')
	{
		c = getchar();
	}
	if (c == '-')
	{
		negative = true;
		c = getchar();
	}
	while (c >= '0')
	{
		x = x * 10 + (c - '0');
		c = getchar();
	}
	if (negative)
	{
		x = -x;
	}
}
template<class T>
void printi(T output)
{
	if (output == 0)
	{
		putchar('0');
		return;
	}
	if (output < 0)
	{
		putchar('-');
		output = -output;
	}
	int buf[20], n = 0;
	while(output)
	{
		buf[n] = ((output % 10));
		output /= 10;
		n++;
	}
	for (n--; n >= 0; n--)
	{
		putchar(buf[n] + '0');
	}
	return;
}
template<class T>
void ckmin(T &a, T b)
{
	a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
	a = max(a, b);
}
long long expo(long long a, long long e, long long mod)
{
	return ((e == 0) ? 1 : ((expo(a * a % mod, e >> 1, mod)) * ((e & 1) ? a : 1) % mod));
}
template<class T, class U>
void nmod(T &x, U mod)
{
	if (x >= mod) x -= mod;
}
template<class T>
T gcd(T a, T b)
{
	return (b ? gcd(b, a % b) : a);
}
template<class T>
T randomize(T mod)
{
	return (uniform_int_distribution<T>(0, mod - 1))(rng);
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define PF push_front
#define fi first
#define se second
#define DBG(x) cerr << #x << " = " << x << endl;
#define SZ(x) ((int) (x.size()))
#define FOR(i, a, b) for (auto i = (a); i < (b); i++)
#define FORD(i, a, b) for (auto i = (a) - 1; i >= (b); i--)
#define ALL(x) x.begin(), x.end()

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-9;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 1000013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;
typedef vector<int> vi;
typedef vector<ll> vl;
typedef vector<ld> vd;
typedef vector<pii> vpi;
typedef vector<pll> vpl;
typedef vector<pdd> vpd;

int Q;
int N;
int pid;
int arr[MAXN], ans[MAXN];

void solve()
{
	int mn = 0, mx = 0;
	FORD(i, N, 0)
	{
		mn += min(-arr[i] * 2, -arr[i]);
		mx += max(-arr[i] * 2, -arr[i]);
		if (mx < 0)
		{
			ans[0] = -2;
			return;
		}
	}
	mn = 0; mx = 0;
	FOR(i, 0, N)
	{
		mn += min(arr[i] * 2, arr[i]);
		mx += max(arr[i] * 2, arr[i]);
		if (mx < 0)
		{
			ans[0] = -2;
			return;
		}
	}
	if (mx < 0 || mn > 0)
	{
		ans[0] = -2;
		return;
	}
	//otherwise i think there's a solution!
	//take mx, and reduce it
	FOR(i, 0, N)
	{
		if (arr[i] == 1)
		{
			ans[i] = 2;
		}
		if (arr[i] == -1)
		{
			ans[i] = 0;
		}
	}
	bool cnt = 0;
	FORD(i, N + 1, 0)
	{
		if (i != N)
		{
			if (arr[i] == 1)
			{
				ans[i] = cnt;
				cnt ^= 1;
			}
			else
			{
				ans[i] = 2;
			}
			mx--;
		}
		if (mx == 0)
		{
			// cerr << "end " << i << endl;
			cnt ^= 1;
			//cnt is how much ONE exceeds ZERO?
			FOR(j, 0, i)
			{
				if (arr[j] == -1)
				{
					ans[j] = cnt;
					cnt ^= 1;
				}
			}
			break;
		}
	}
}
void gen()
{
	//a <= 2b <= 4a AND a <= 2b both ways
	//dp[a][b][c] = TOTAL a, b is # of 1's, b is min value of 2b - a
	int dp[2][303][905];
	FOR(i, 0, 2)
	{
		FOR(j, 0, 303)
		{
			FOR(k, 0, 903)
			{
				dp[i][j][k] = 0;
			}
		}
	}
	dp[0][0][301] = 1;
	FOR(i, 0, 301)
	{
		FOR(j, 0, i + 1)
		{
			FOR(k, -301, 603)
			{
				int a = j, b = i - j;
				if (a > 2 * b || dp[0][j][301 + k] == 0) continue;
				//add a )
				dp[1][j + 1][301 + min(k + 2, 2)] += dp[0][j][301 + k]; nmod(dp[1][j + 1][301 + min(k + 2, 2)], INF);
				//add a (
				dp[1][j][301 + min(k - 1, -1)] += dp[0][j][301 + k]; nmod(dp[1][j][301 + min(k - 1, -1)], INF);
				if (a <= 2*b && 2*b <= 4*a && k >= 0)
				{
					ans[i] += dp[0][j][301 + k]; nmod(ans[i], INF);
				}
			}
		}
		FOR(j, 0, 303)
		{
			FOR(k, 0, 905)
			{
				dp[0][j][k] = dp[1][j][k]; dp[1][j][k] = 0;
			}
		}
	}
}

int32_t main()
{
	ios_base::sync_with_stdio(0); cin.tie(0);
	// cout << fixed << setprecision(10);
	// cerr << fixed << setprecision(10);
	// freopen ("file.in", "r", stdin);
	// freopen ("file.out", "w", stdout);
	cin >> pid >> Q;
	if (pid == 1)
	{
		// cerr << endl;
		while(Q--)
		{
			string temps;
			cin >> temps; N = SZ(temps);
			FOR(j, 0, N)
			{
				arr[j] = (temps[j] == '(' ? 1 : -1);
			}
			solve();
			if (ans[0] == -2)
			{
				cout << "impossible\n";
				continue;
			}
			FOR(j, 0, N)
			{
				if (ans[j] == 0) cout << 'B';
				if (ans[j] == 1) cout << 'R';
				if (ans[j] == 2) cout << 'G';
			}
			cout << '\n';
		}
	}
	if (pid == 2)
	{
		gen();
		while(Q--)
		{
			cin >> N;
			cout << ans[N] << '\n';
		}
	}
	// cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 408 KB Output is correct
4 Correct 2 ms 500 KB Output is correct
5 Correct 2 ms 500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 500 KB Output is correct
2 Correct 2 ms 628 KB Output is correct
3 Correct 2 ms 628 KB Output is correct
4 Correct 2 ms 628 KB Output is correct
5 Correct 2 ms 692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 500 KB Output is correct
2 Correct 2 ms 628 KB Output is correct
3 Correct 2 ms 628 KB Output is correct
4 Correct 2 ms 628 KB Output is correct
5 Correct 2 ms 692 KB Output is correct
6 Correct 2 ms 692 KB Output is correct
7 Correct 2 ms 692 KB Output is correct
8 Correct 2 ms 692 KB Output is correct
9 Correct 2 ms 692 KB Output is correct
10 Correct 2 ms 692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 500 KB Output is correct
2 Correct 2 ms 628 KB Output is correct
3 Correct 2 ms 628 KB Output is correct
4 Correct 2 ms 628 KB Output is correct
5 Correct 2 ms 692 KB Output is correct
6 Correct 2 ms 692 KB Output is correct
7 Correct 2 ms 692 KB Output is correct
8 Correct 2 ms 692 KB Output is correct
9 Correct 2 ms 692 KB Output is correct
10 Correct 2 ms 692 KB Output is correct
11 Correct 3 ms 692 KB Output is correct
12 Correct 3 ms 864 KB Output is correct
13 Correct 4 ms 864 KB Output is correct
14 Correct 3 ms 864 KB Output is correct
15 Correct 3 ms 864 KB Output is correct
16 Correct 5 ms 864 KB Output is correct
17 Correct 9 ms 1728 KB Output is correct
18 Correct 6 ms 1728 KB Output is correct
19 Correct 7 ms 1728 KB Output is correct
20 Correct 8 ms 1728 KB Output is correct
21 Correct 27 ms 1728 KB Output is correct
22 Correct 70 ms 10564 KB Output is correct
23 Correct 37 ms 10564 KB Output is correct
24 Correct 55 ms 10564 KB Output is correct
25 Correct 66 ms 10580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 78 ms 10580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 78 ms 10580 KB Output is correct
2 Correct 81 ms 10580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 78 ms 10580 KB Output is correct
2 Correct 81 ms 10580 KB Output is correct
3 Correct 87 ms 10580 KB Output is correct