답안 #848717

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
848717 2023-09-13T11:07:26 Z danikoynov Jail (JOI22_jail) C++14
5 / 100
748 ms 236444 KB
/**
 ____ ____ ____ ____ ____ ____
||l |||e |||i |||n |||a |||d ||
||__|||__|||__|||__|||__|||__||
|/__\|/__\|/__\|/__\|/__\|/__\|

**/

#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}

const int maxn = 2e5 + 10;

int n, m, s[maxn], t[maxn], parent[maxn];
vector < int > adj[maxn], children[maxn];
void input()
{
    cin >> n;
    for (int i = 1; i < n; i ++)
    {
        int a, b;
        cin >> a >> b;
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    cin >> m;
    for (int i = 1; i <= m; i ++)
    {
        cin >> s[i] >> t[i];
    }

}

int tin[maxn], tout[maxn], occ[2 * maxn], depth[maxn], timer;
int sub[maxn], heavy[maxn];
void euler(int v = 1, int p = -1)
{
    tin[v] = ++ timer;
    occ[timer] = v;
    sub[v] = 1;
    heavy[v] = -1;
    parent[v] = p;
    for (int u : adj[v])
    {
        if (u == p)
            continue;
        children[v].push_back(u);
        depth[u] = depth[v] + 1;
        euler(u, v);
        if (heavy[v] == -1 || sub[u] > sub[heavy[v]])
            heavy[v] = u;
        sub[v] += sub[u];
        occ[++ timer] = v;
    }
    tout[v] = timer;
}

const int maxlog = 20;
int dp[maxlog][maxn * 2], lg[2 * maxn];

void build_sparse_table()
{
    for (int i = 1; i <= timer; i ++)
    {
        dp[0][i] = occ[i];
        lg[i] = lg[i / 2] + 1;
    }

    for (int j = 1; j < lg[timer]; j ++)
    {
        for (int i = 1; i <= timer - (1 << j) + 1; i ++)
        {
            dp[j][i] = dp[j - 1][i + (1 << (j - 1))];
            if (depth[dp[j - 1][i]] < depth[dp[j][i]])
                dp[j][i] = dp[j - 1][i];
        }
    }
}

int get_lca(int v, int u)
{
    int l = tin[v], r = tin[u];
    if (l > r)
        swap(l, r);
    int len = lg[r - l + 1] - 1;
    int lca = dp[len][r - (1 << len) + 1];
    if (depth[dp[len][l]] < depth[lca])
        lca = dp[len][l];
    return lca;
}

vector < int > graph[10 * maxn];
bool is_cycle;

bool in_subtree(int v, int u)
{
    return (tin[v] <= tin[u] && tout[v] >= tout[u]);
}

bool on_path(int v, int u, int w)
{

    int lca = get_lca(v, u);
    if (in_subtree(lca, w) && in_subtree(w, v))
        return true;
    if (in_subtree(lca, w) && in_subtree(w, u))
        return true;
    return false;
}

void check_prisoners(int i, int j)
{
    /**if (on_path(s[i], t[i], s[j]) && on_path(s[i], t[i], t[j]))
    {
        is_cycle = true;
        return;
    }*/

    if (on_path(s[i], t[i], s[j]))
    {
        graph[i].push_back(j);
        return;
    }

    if (on_path(s[i], t[i], t[j]))
    {
        graph[j].push_back(i);
        return;
    }
}

vector < pair < int, int > > link[maxn];
set < pair < int, int > > loc_set[maxn];

bool cmp(pair < int, int > di, pair < int, int > dj)
{
    int i = di.second, j = dj.second;
    int d1 = depth[s[i]] + depth[t[i]] - 2 * depth[get_lca(s[i], t[i])];
    int d2 = depth[s[j]] + depth[t[j]] - 2 * depth[get_lca(s[j], t[j])];
    return d1 > d2;
}

bool check_range(int idx, int left, int right)
{
    pair < int, int > cur = {left, -1};
    set < pair < int, int > > :: iterator it = loc_set[idx].lower_bound(cur);
    if (it == loc_set[idx].end())
        return false;
    if (it -> first <= right)
        return true;
    return false;
}

int find_child(int v, int u)
{
    int lf = 0, rf = (int)(children[v].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (tout[children[v][mf]] < tin[u])
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    return children[v][lf];

}
void dfs(int v, int p)
{

    for (int u : adj[v])
    {
        if (u == p)
            continue;
        dfs(u, v);
        if (loc_set[u].size() > loc_set[v].size())
            swap(loc_set[u], loc_set[v]);

        for (pair < int, int > cur : loc_set[u])
        {
            pair < int, int > par = {tin[s[cur.second]], cur.second};
            if (tin[s[cur.second]] == cur.first)
                par.first = tin[t[cur.second]];
            if (loc_set[v].find(par) != loc_set[v].end())
                loc_set[v].erase(par);
            else
                loc_set[v].insert(cur);
        }
    }

    sort(link[v].begin(), link[v].end(), cmp);

    for (pair < int, int > cur : link[v])
    {
        pair < int, int > par = {tin[s[cur.second]], cur.second};
        if (tin[s[cur.second]] == cur.first)
            par.first = tin[t[cur.second]];
        ///cout << "here " << cur.first << " " << cur.second << " " << par.first << " " << par.second << " " << tin[s[cur.second]] << endl;
        if (loc_set[v].find(par) != loc_set[v].end())
        {
            loc_set[v].erase(par);
            continue;
        }
        int idx = cur.second, u = s[idx];
        if (u == v)
            u = t[idx];

        if (!in_subtree(u, v))
        {
            if (check_range(v, tin[u], tout[u]))
                is_cycle = true;
        }
        else
        {
            int child = find_child(u, v);
            ///cout << "HERE " << child << " " << u << endl;
            if (check_range(v, 1, tin[child] - 1) || check_range(v, tout[child] + 1, timer))
            {
                ///cout << "FOUND CYCLE " << v << " " << u << " " << child << endl;
                is_cycle = true;
            }
        }
        loc_set[v].insert(cur);
    }
    /**cout << v << " : " << p << endl;
    for (pair < int, int > cur : loc_set[v])
        cout << cur.first << " " << cur.second << endl;
    cout << "cycle " << is_cycle << endl;
        cout << "-------------" << endl;*/
}


struct chain
{
    int top, left, right;

} ch[maxn];

int ord[maxn], ch_idx[maxn], ch_cnt, to, ch_pos[maxn];


void hld(int v)
{
    ch_idx[v] = ch_cnt;
    ord[++ to] = v;
    ch[ch_idx[v]].right = to;
    ch_pos[v] = to;
    if (heavy[v] != -1)
        hld(heavy[v]);

    for (int u : children[v])
    {
        if (u == heavy[v])
            continue;

        ch_cnt ++;
        ch[ch_cnt].top = v;
        ch[ch_cnt].left = to + 1;
        ch[ch_cnt].right = to;
        hld(u);
    }
}

vector < int > ver_start[maxn], ver_end[maxn]; /// might be replaced
void add_edge(int v, int u)
{
    graph[v].push_back(u);
    ///cout << v << " " << u << endl;
}
void build_forward_tree(int root, int left, int right)
{
    ///cout << root + m << " : " << left << " " << right << endl;
    if (left == right)
    {
        for (int v : ver_start[left])
            add_edge(root + m, v);
        ///graph[root + m].push_back(v);
        return;
    }

    int mid = (left + right) / 2;
    add_edge(root + m, root * 2 + m);
    add_edge(root + m, root * 2 + 1 + m);
    ///graph[root + m].push_back(root * 2 + m);
    ///graph[root + m].push_back(root * 2  + 1 + m);

    build_forward_tree(root * 2, left, mid);
    build_forward_tree(root * 2 + 1, mid + 1, right);
}

vector < int > bkt[maxn * 4];
void build_backward_tree(int root, int left, int right)
{
    bkt[root].clear();
    if (left == right)
    {
        for (int v : ver_end[left])
        {
            bkt[root].push_back(v);
            add_edge(v, root + m + 4 * n);
            ///graph[v].push_back(root + m + 4 * n);
            ///cout << v << " here " << left << endl;
        }
        return;
    }

    int mid = (left + right) / 2;
    ///add_edge(root * 2 + m + 4 * n, root + m + 4 * n);
    ///add_edge(root * 2 + 1 + m + 4 * n, root + m + 4 * n);

    ///graph[root * 2 + m + 4 * n].push_back(root + m + 4 * n);
    ///graph[root * 2  + 1 + m + 4 * n].push_back(root + m + 4 * n);

    build_backward_tree(root * 2, left, mid);
    build_backward_tree(root * 2 + 1, mid + 1, right);

    for (int v : bkt[root * 2])
        bkt[root].push_back(v);
    for (int v : bkt[root * 2 + 1])
        bkt[root].push_back(v);
    for (int v : bkt[root])
        add_edge(v, root + m + 4 * n);

}

void add_forward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        add_edge(val, root + m);
        ///graph[val].push_back(root + m);
        return;
    }

    int mid = (left + right) / 2;
    add_forward(root * 2, left, mid, qleft, qright, val);
    add_forward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_backward(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return;

    if (left >= qleft && right <= qright)
    {
        add_edge(root + m + 4 * n, val);
        ///graph[root + m + 4 * n].push_back(val);
        return;
    }

    int mid = (left + right) / 2;
    add_backward(root * 2, left, mid, qleft, qright, val);
    add_backward(root * 2 + 1, mid + 1, right, qleft, qright, val);
}

void add_path_forward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        ///add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    ///add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}

void add_path_backward(int v, int lca, int idx)
{

    while(ch_idx[v] != ch_idx[lca])
    {

        ///add_forward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        add_backward(1, 1, n, ch[ch_idx[v]].left, ch_pos[v], idx);
        v = ch[ch_idx[v]].top;
    }
    ///cout << "idx " << idx << " " << ch_pos[lca] << " " << ch_pos[v] << endl;

    ///add_forward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
    add_backward(1, 1, n, ch_pos[lca], ch_pos[v], idx);
}
void build_graph()
{
    for (int i = 1; i <= m; i ++)
    {
        link[s[i]].push_back({tin[t[i]], i});
        link[t[i]].push_back({tin[s[i]], i});
        ver_start[s[i]].push_back(i);
        ver_end[t[i]].push_back(i);
    }


    ch_cnt = 0;
    to = 0;
    ch[++ ch_cnt].top = 0;
    ch[ch_cnt].left = 1;
    ch[ch_cnt].right = 0;
    hld(1);

    build_backward_tree(1, 1, n);
    build_forward_tree(1, 1, n);

    for (int i = 1; i <= m; i ++)
    {
        int lca = get_lca(s[i], t[i]);

        if (s[i] != lca && parent[s[i]] != lca)
            add_path_forward(parent[s[i]], find_child(lca, s[i]), i);
        if (s[i] != lca)
        {
            add_path_forward(t[i], lca, i);
        }
        else
        {
            add_path_forward(t[i], find_child(lca, t[i]), i);
        }

        if (lca != t[i])
        {
            add_path_backward(s[i], lca, i);
        }
        else
        {
            add_path_backward(s[i], find_child(lca, s[i]), i);
        }
        if (t[i] != lca && parent[t[i]] != lca)
            add_path_backward(parent[t[i]], find_child(lca, t[i]), i);
    }
    /**for (int i = 1; i <= m; i ++)
    {
        for (int j = 1; j <= m; j ++)
        {
            if (i != j)
                check_prisoners(i, j);
        }
    }*/
}

int used[maxn];

void check_dag(int v)
{
    used[v] = 1;
    for (int u : graph[v])
    {
        if (used[u] == 2)
            continue;
        ///cout << v << " : " << u << endl;
        if (used[u] == 1)
            is_cycle = 1;
        else
        {
            check_dag(u);
        }
    }
    used[v] = 2;
}

void check_graph()
{
    for (int i = 1; i <= m + 8 * n; i ++)
    {
        if (!used[i])
            check_dag(i);
    }

    if (is_cycle)
        cout << "No" << endl;
    else
        cout << "Yes" << endl;
}

void clear_data()
{
    is_cycle = false;
    for (int i = 1; i <= m + 8 * n; i ++)
        graph[i].clear(), used[i] = 0;

    for (int i = 1; i <= n; i ++)
    {
        adj[i].clear();
        link[i].clear();
        ver_start[i].clear();
        ver_end[i].clear();
        children[i].clear();
        loc_set[i].clear();
    }


    timer = 0;
}

void solve()
{
    input();
    euler();
    build_sparse_table();
    build_graph();
    check_graph();
    clear_data();

}

int main()
{
    ///speed();
    ///freopen("test.txt", "r", stdin);
    int q;
    cin >> q;
    while(q --)
        solve();
    return 0;
}
/**
1
7
1 2
2 3
3 4
4 5
3 6
6 7
2
4 1
5 7

1
4
1 2
2 3
3 4
2
1 3
2 4


1
6
1 2
1 3
2 4
2 5
3 6
1
4 5

*/

# 결과 실행 시간 메모리 Grader output
1 Correct 25 ms 117340 KB Output is correct
2 Correct 23 ms 117340 KB Output is correct
3 Correct 22 ms 113244 KB Output is correct
4 Correct 44 ms 123412 KB Output is correct
5 Correct 70 ms 123492 KB Output is correct
6 Correct 27 ms 123480 KB Output is correct
7 Correct 27 ms 123484 KB Output is correct
8 Correct 29 ms 123672 KB Output is correct
9 Correct 100 ms 134344 KB Output is correct
10 Correct 128 ms 164348 KB Output is correct
11 Correct 41 ms 119388 KB Output is correct
12 Correct 107 ms 123644 KB Output is correct
13 Correct 245 ms 192988 KB Output is correct
14 Correct 238 ms 192572 KB Output is correct
15 Correct 424 ms 197584 KB Output is correct
16 Correct 748 ms 236444 KB Output is correct
17 Correct 305 ms 203492 KB Output is correct
18 Correct 317 ms 214636 KB Output is correct
19 Correct 258 ms 200148 KB Output is correct
20 Correct 303 ms 200120 KB Output is correct
21 Correct 323 ms 203096 KB Output is correct
22 Correct 224 ms 192972 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 22 ms 113244 KB Output is correct
3 Correct 26 ms 123480 KB Output is correct
4 Incorrect 26 ms 123856 KB Output isn't correct
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 22 ms 113244 KB Output is correct
3 Correct 26 ms 123480 KB Output is correct
4 Incorrect 26 ms 123856 KB Output isn't correct
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 22 ms 113244 KB Output is correct
3 Correct 26 ms 123480 KB Output is correct
4 Incorrect 26 ms 123856 KB Output isn't correct
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 22 ms 113244 KB Output is correct
3 Correct 26 ms 123480 KB Output is correct
4 Incorrect 26 ms 123856 KB Output isn't correct
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 117336 KB Output is correct
2 Correct 23 ms 117340 KB Output is correct
3 Correct 23 ms 117340 KB Output is correct
4 Correct 23 ms 113108 KB Output is correct
5 Correct 38 ms 119388 KB Output is correct
6 Correct 26 ms 123484 KB Output is correct
7 Incorrect 25 ms 123484 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 25 ms 117340 KB Output is correct
2 Correct 23 ms 117340 KB Output is correct
3 Correct 22 ms 113244 KB Output is correct
4 Correct 44 ms 123412 KB Output is correct
5 Correct 70 ms 123492 KB Output is correct
6 Correct 27 ms 123480 KB Output is correct
7 Correct 27 ms 123484 KB Output is correct
8 Correct 29 ms 123672 KB Output is correct
9 Correct 100 ms 134344 KB Output is correct
10 Correct 128 ms 164348 KB Output is correct
11 Correct 41 ms 119388 KB Output is correct
12 Correct 107 ms 123644 KB Output is correct
13 Correct 245 ms 192988 KB Output is correct
14 Correct 238 ms 192572 KB Output is correct
15 Correct 424 ms 197584 KB Output is correct
16 Correct 748 ms 236444 KB Output is correct
17 Correct 305 ms 203492 KB Output is correct
18 Correct 317 ms 214636 KB Output is correct
19 Correct 258 ms 200148 KB Output is correct
20 Correct 303 ms 200120 KB Output is correct
21 Correct 323 ms 203096 KB Output is correct
22 Correct 224 ms 192972 KB Output is correct
23 Correct 23 ms 117336 KB Output is correct
24 Correct 22 ms 113244 KB Output is correct
25 Correct 26 ms 123480 KB Output is correct
26 Incorrect 26 ms 123856 KB Output isn't correct
27 Halted 0 ms 0 KB -