답안 #830103

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
830103 2023-08-18T18:52:34 Z tigran 사탕 분배 (IOI21_candies) C++17
38 / 100
5000 ms 34632 KB
#include "candies.h"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr ll inf = 1e18;
vector<ll> mn, mn2, mx, mx2, lazy;
void apply_add(int p, ll v) {
    lazy[p] += v;
    mn[p] += v;
    mx[p] += v;
    if (mn2[p] != inf) {
        mn2[p] += v;
    }
    if (mx2[p] != -inf) {
        mx2[p] += v;
    }
}
void apply_upd(int p, ll cmn, ll cmx) {
    if (cmn == cmx) {
        mn[p] = mx[p] = cmn;
        mn2[p] = inf;
        mx2[p] = -inf;
    } else {
        if (cmn < mx[p]) {
            if (mn[p] == mx[p]) {
                mn[p] = cmn;
            }
            if (mn2[p] == mx[p]) {
                mn2[p] = cmn;
            }
            mx[p] = cmn;
        }
        if (cmx > mn[p]) {
            if (mx[p] == mn[p]) {
                mx[p] = cmx;
            }
            if (mx2[p] == mn[p]) {
                mx2[p] = cmx;
            }
            mn[p] = cmx;
        }
    }
}
void push_add(int p) {
    apply_add(p * 2, lazy[p]);
    apply_add(p * 2 + 1, lazy[p]);
    lazy[p] = 0;
}
void push_upd(int p) {
    apply_upd(p * 2, mx[p], mn[p]);
    apply_upd(p * 2 + 1, mx[p], mn[p]);
}
void pull(int p) {
    int l = p * 2;
    int r = p * 2 + 1;
    mx[p] = max(mx[l], mx[r]);
    mn[p] = min(mn[l], mn[r]);
    mx2[p] = max(mx[p] == mx[l] ? mx2[l] : mx[l], mx[p] == mx[r] ? mx2[r] : mx[r]);
    mn2[p] = min(mn[p] == mn[l] ? mn2[l] : mn[l], mn[p] == mn[r] ? mn2[r] : mn[r]);
}
void add(int p, int l, int r, int L, int R, int v) {
    if (R <= l || r <= L) {
        return;
    }
    if (L <= l && r <= R) {
        apply_add(p, v);
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    add(p * 2, l, m, L, R, v);
    add(p * 2 + 1, m, r, L, R, v);
    pull(p);
}
void upd(int p, int l, int r, int L, int R, ll v, bool f) {
    if (R <= l || r <= L || (!f && v >= mx[p]) || (f && v <= mn[p])) {
        return;
    }
    if (L <= l && r <= R && (mn[p] == mx[p] || (!f && v > mx2[p]) || (f && v < mn2[p]))) {
        if (f) {
            apply_upd(p, inf, v);
        } else {
            apply_upd(p, v, -inf);
        }
        return;
    }
    int m = (l + r + 1) / 2;
    push_add(p);
    push_upd(p);
    upd(p * 2, l, m, L, R, v, f);
    upd(p * 2 + 1, m, r, L, R, v, f);
    pull(p);
}
vector<int> distribute_candies(vector<int> C, vector<int> L, vector<int> R, vector<int> V) {
    for (int &x : R) {
        x++;
    }
    int N = C.size(), Q = V.size();
    if (N <= 2000 && Q <= 2000) {
        vector<int> A(N);
        for (int i = 0; i < Q; i++) {
            for (int j = L[i]; j < R[i]; j++) {
                A[j] += V[i];
                A[j] = max(A[j], 0);
                A[j] = min(A[j], C[j]);
            }
        }
        return A;
    }
    if (*min_element(V.begin(), V.end()) > 0) {
        vector<ll> s(N + 1);
        for (int i = 0; i < Q; i++) {
            s[L[i]] += V[i];
            s[R[i]] -= V[i];
        }
        vector<int> A(N);
        for (int i = 0; i < N; i++) {
            A[i] = min((ll)C[i], s[i]);
            s[i + 1] += s[i];
        }
        return A;
    }
    int M = 2 << __lg(N - 1);
    if (L == vector(Q, 0) && R == vector(Q, N)) {
        vector<int> ord(N);
        iota(ord.begin(), ord.end(), 0);
        sort(ord.begin(), ord.end(), [&](int i, int j) {
            return C[i] < C[j];
        });
        vector<int> st(2 * M), df(2 * M), lz(2 * M, -1);
        vector<ll> sum(2 * M);
        auto pull = [&](int i) {
            st[i] = max(st[i * 2], st[i * 2 + 1]);
            df[i] = max(df[i * 2], df[i * 2 + 1]);
        };
        auto apply = [&](int p, int l, int r, int v, ll s) {
            if (v == 0) {
                st[p] = 0;
                df[p] = C[ord[min(r, N) - 1]];
            } else if (v == 1) {
                st[p] = C[ord[min(r, N) - 1]];
                df[p] = 0;
            }
            st[p] += s;
            df[p] -= s;
            if (v != -1) {
                lz[p] = v;
                sum[p] = s;
            } else {
                sum[p] += s;
            }
        };
        auto push = [&](int p, int l, int r) {
            int m = (l + r + 1) / 2;
            apply(p * 2, l, m, lz[p], sum[p]);
            apply(p * 2 + 1, m, r, lz[p], sum[p]);
            lz[p] = -1;
            sum[p] = 0;
        };
        auto upd = [&](auto upd, int p, int l, int r, int L, int R, int f, int v) -> void {
            if (R <= l || r <= L) {
                return;
            }
            if (L <= l && r <= R) {
                if (f == 0) {
                    apply(p, l, r, 0, 0);
                } else if (f == 1) {
                    apply(p, l, r, 1, 0);
                } else {
                    apply(p, l, r, -1, v);
                }
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            upd(upd, p * 2, l, m, L, R, f, v);
            upd(upd, p * 2 + 1, m, r, L, R, f, v);
            pull(p);
        };
        auto find = [&](auto find, int p, int l, int r, int v, vector<int> &s) -> int {
            if (l + 1 == r) {
                return l;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            if (s[p * 2] >= v) {
                return find(find, p * 2, l, m, v, s);
            } else {
                return find(find, p * 2 + 1, m, r, v, s);
            }
        };
        for (int i = 0; i < N; i++) {
            df[i + M] = C[ord[i]];
        }
        for (int i = M - 1; i; i--) {
            pull(i);
        }
        vector<int> ans(N);
        auto qry = [&](auto qry, int p, int l, int r) -> void {
            if (l + 1 == r) {
                if (l < N) {
                    ans[ord[l]] = st[p];
                }
                return;
            }
            int m = (l + r + 1) / 2;
            push(p, l, r);
            qry(qry, p * 2, l, m);
            qry(qry, p * 2 + 1, m, r);
        };
        for (int i = 0; i < Q; i++) {
            qry(qry, 1, 0, M);
            if (V[i] < 0) {
                int f = st[1] < -V[i] ? N : find(find, 1, 0, M, -V[i], st);
                upd(upd, 1, 0, M, 0, f, 0, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            } else {
                int f = df[1] < V[i] ? N : find(find, 1, 0, M, V[i], df);
                upd(upd, 1, 0, M, 0, f, 1, 0);
                upd(upd, 1, 0, M, f, N, 2, V[i]);
            }
        }
        
        qry(qry, 1, 0, M);
        return ans;
    }
    mn.resize(2 * M, 0);
    mx.resize(2 * M, 0);
    mn2.resize(2 * M, inf);
    mx2.resize(2 * M, -inf);
    lazy.resize(2 * M);
    for (int i = 0; i < Q; i++) {
        add(1, 0, M, L[i], R[i], V[i]);
        if (V[i] > 0) {
            upd(1, 0, M, L[i], R[i], C[0], 0);
        } else {
            upd(1, 0, M, L[i], R[i], 0, 1);
        }
    }
    for (int i = 1; i < M; i++) {
        push_add(i);
        push_upd(i);
    }
    vector<int> ans(N);
    for (int i = 0; i < N; i++) {
        ans[i] = mx[i + M];
    }
    return ans;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 296 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 312 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 89 ms 13784 KB Output is correct
2 Correct 79 ms 12964 KB Output is correct
3 Correct 78 ms 12756 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 161 ms 8776 KB Output is correct
3 Correct 55 ms 26548 KB Output is correct
4 Correct 414 ms 33808 KB Output is correct
5 Correct 603 ms 34188 KB Output is correct
6 Correct 786 ms 34632 KB Output is correct
7 Correct 677 ms 33916 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 224 KB Output is correct
2 Correct 1 ms 296 KB Output is correct
3 Execution timed out 5025 ms 9160 KB Time limit exceeded
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 296 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 3 ms 312 KB Output is correct
6 Correct 89 ms 13784 KB Output is correct
7 Correct 79 ms 12964 KB Output is correct
8 Correct 78 ms 12756 KB Output is correct
9 Correct 1 ms 300 KB Output is correct
10 Correct 161 ms 8776 KB Output is correct
11 Correct 55 ms 26548 KB Output is correct
12 Correct 414 ms 33808 KB Output is correct
13 Correct 603 ms 34188 KB Output is correct
14 Correct 786 ms 34632 KB Output is correct
15 Correct 677 ms 33916 KB Output is correct
16 Correct 1 ms 224 KB Output is correct
17 Correct 1 ms 296 KB Output is correct
18 Execution timed out 5025 ms 9160 KB Time limit exceeded
19 Halted 0 ms 0 KB -