Submission #817894

# Submission time Handle Problem Language Result Execution time Memory
817894 2023-08-09T19:20:08 Z LucaIlie Naan (JOI19_naan) C++17
29 / 100
78 ms 26340 KB
#include <bits/stdc++.h>

using namespace std;

const int INF = 1e9;

struct fraction {
    long long x, y;

    long long integer() {
        return x / y;
    }

    void simplify() {
        long long d = __gcd( x, y );
        x /= d;
        y /= d;
    }
};

fraction operator - ( long long a, fraction b ) {
    fraction ans = { a * b.y - b.x, b.y };
    ans.simplify();
    return ans;
}

fraction operator * ( long long a, fraction b ) {
    fraction ans = { a * b.x, b.y };
    ans.simplify();
    return ans;
}

bool operator < ( fraction a, fraction b ) {
    return (long double)a.x / a.y < (long double)b.x / b.y;
}

bool operator > ( fraction a, fraction b ) {
    return (long double)a.x / a.y > (long double)b.x / b.y;
}

fraction operator * ( fraction a, fraction b ) {
    fraction ans = { a.x * b.x, a.y * b.y };
    ans.simplify();
    return ans;
}

fraction operator / ( fraction a, fraction b ) {
    fraction ans = { a.x * b.y, a.y * b.x };
    ans.simplify();
    return ans;
}

fraction operator / ( fraction a, long long b ) {
    fraction ans = { a.x, a.y * b };
    ans.simplify();
    return ans;
}

fraction operator + ( fraction a, long long b ) {
    fraction ans = { a.x + a.y * b, a.y };
    ans.simplify();
    return ans;
}

fraction operator + ( long long a, fraction b ) {
    return b + a;
}

fraction operator + ( fraction a, fraction b ) {
    fraction ans = { a.x * b.y + b.x * a.y, a.y * b.y };
    ans.simplify();
    return ans;
}

fraction operator - ( fraction a, fraction b ) {
    fraction ans = { a.x * b.y - b.x * a.y, a.y * b.y };
    ans.simplify();
    return ans;
}

const int MAX_N = 2000;
const int MAX_L = 2000;

bool active[MAX_N];
int permutation[MAX_N];
fraction happiness[MAX_N][MAX_L + 1], sumHappiness[MAX_N][MAX_L + 1];
fraction happy[MAX_N], timeFrac[MAX_N], timeFractions[MAX_N];

int main() {
    int n, l;

    cin >> n >> l;
    for ( int i = 0; i < n; i++ ) {
        happy[i] = { 0, n };
        sumHappiness[i][0] = { 0, 1 };
        for ( int j = 1; j <= l; j++ ) {
            int aux;
            cin >> aux;
            happiness[i][j] = { aux, 1 };
            happy[i].x += happiness[i][j].x;
            sumHappiness[i][j] = sumHappiness[i][j - 1] + happiness[i][j];
        }
        happy[i].simplify();
    }

    for ( int i = 0; i < n; i++ )
        active[i] = true;

    timeFractions[0] = { 0, 1 };
    permutation[0] = 0;
    for ( int pas = 1; pas <= n; pas++ ) {
        for ( int i = 0; i < n; i++ ) {
            if ( !active[i] ) {
                timeFrac[i] = { INF + 1, 1 };
                continue;
            }

            int j = timeFractions[pas - 1].integer();
            fraction crtHappiness = happiness[i][j + 1] * (j + 1 - timeFractions[pas - 1]);
            crtHappiness.simplify();

            if ( crtHappiness > happy[i] ) {
                timeFrac[i] = timeFractions[pas - 1] + happy[i] / happiness[i][j + 1];
                continue;
            }

            int left = j + 1, right = l + 1;
            while ( right - left > 1 ) {
                int mid = (left + right) / 2;

                if ( crtHappiness + (sumHappiness[i][mid] - sumHappiness[i][j + 1]) < happy[i] )
                    left = mid;
                else
                    right = mid;
            }
            if ( left == l ) {
                timeFrac[i] = { INF, 1 };
                continue;
            }
            crtHappiness = crtHappiness + (sumHappiness[i][left] - sumHappiness[i][j + 1]);
            timeFrac[i] = left + (happy[i] - crtHappiness) / happiness[i][left + 1];
        }
        int p = 0;
        for ( int i = 0; i < n; i++ ) {
            if ( active[i] && timeFrac[i] < timeFrac[p] )
                p = i;
        }

        timeFractions[pas] = timeFrac[p];
        permutation[pas] = p;
        active[p] = false;
    }

    for ( int i = 1; i < n; i++ )
        cout << timeFractions[i].x << " " << timeFractions[i].y << "\n";
    for ( int i = 1; i <= n; i++ )
        cout << permutation[i] + 1 << " ";

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 0 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 2 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 468 KB Output is correct
4 Correct 2 ms 632 KB Output is correct
5 Correct 1 ms 596 KB Output is correct
6 Correct 1 ms 468 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 440 KB Output is correct
9 Correct 2 ms 724 KB Output is correct
10 Correct 2 ms 596 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 468 KB Output is correct
14 Correct 2 ms 596 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 2 ms 596 KB Output is correct
17 Correct 2 ms 596 KB Output is correct
18 Correct 2 ms 724 KB Output is correct
19 Correct 2 ms 596 KB Output is correct
20 Correct 2 ms 596 KB Output is correct
21 Correct 2 ms 596 KB Output is correct
22 Correct 2 ms 596 KB Output is correct
23 Correct 0 ms 340 KB Output is correct
24 Correct 2 ms 640 KB Output is correct
25 Correct 1 ms 468 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 0 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 2 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 2 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 2 ms 632 KB Output is correct
20 Correct 1 ms 596 KB Output is correct
21 Correct 1 ms 468 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 440 KB Output is correct
24 Correct 2 ms 724 KB Output is correct
25 Correct 2 ms 596 KB Output is correct
26 Correct 1 ms 468 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 468 KB Output is correct
29 Correct 2 ms 596 KB Output is correct
30 Correct 1 ms 596 KB Output is correct
31 Correct 2 ms 596 KB Output is correct
32 Correct 2 ms 596 KB Output is correct
33 Correct 2 ms 724 KB Output is correct
34 Correct 2 ms 596 KB Output is correct
35 Correct 2 ms 596 KB Output is correct
36 Correct 2 ms 596 KB Output is correct
37 Correct 2 ms 596 KB Output is correct
38 Correct 0 ms 340 KB Output is correct
39 Correct 2 ms 640 KB Output is correct
40 Correct 1 ms 468 KB Output is correct
41 Correct 1 ms 340 KB Output is correct
42 Correct 1 ms 596 KB Output is correct
43 Runtime error 78 ms 26340 KB Execution killed with signal 8
44 Halted 0 ms 0 KB -