Submission #804605

# Submission time Handle Problem Language Result Execution time Memory
804605 2023-08-03T10:15:28 Z ono_de206 Distributing Candies (IOI21_candies) C++17
38 / 100
670 ms 54132 KB
#include "candies.h"
#include<bits/stdc++.h>
using namespace std;

#define in insert
#define all(x) x.begin(),x.end()
#define pb push_back
#define eb emplace_back
#define ff first
#define ss second

// #define int long long
 
typedef long long ll;
typedef vector<int> vi;
typedef set<int> si;
typedef multiset<int> msi;
typedef pair<int, int> pii;
typedef vector<pii> vpii;

const int mxn = 2e5 + 10;
const long long inf = 1e18 + 10;

// struct segTreeBeats {
// 	struct node {
// 		long long mx1, mx2, mn1, mn2, lz, mxc, mnc, sum;
// 		node(int x = 0) : mx1(x), mx2(-inf), mn1(x), mn2(inf), lz(0), mxc(1), mnc(1), sum(x) {}
// 		friend node operator+(const node &a, const node &b) {
// 			node ret;
// 			ret.sum = a.sum + b.sum;
// 			ret.mx1 = max(a.mx1, b.mx1);
// 			ret.mn1 = min(a.mn1, b.mn1);
// 			if(b.mx1 == a.mx1) {
// 				ret.mxc = a.mxc + b.mxc;
// 				ret.mx2 = max(a.mx2, b.mx2);
// 			} else {
// 				if(b.mx1 > a.mx1) {
// 					ret.mxc = b.mxc;
// 					ret.mx2 = max(a.mx1, b.mx2);
// 				} else {
// 					ret.mxc = a.mxc;
// 					ret.mx2 = max(a.mx2, b.mx1);
// 				}
// 			}

// 			if(b.mn1 == a.mn1) {
// 				ret.mnc = a.mnc + b.mnc;
// 				ret.mn2 = min(a.mn2, b.mn2);
// 			} else {
// 				if(b.mn1 < a.mn1) {
// 					ret.mnc = b.mnc;
// 					ret.mn2 = min(a.mn1, b.mn2);
// 				} else {
// 					ret.mnc = a.mnc;
// 					ret.mn2 = min(a.mn2, b.mn1);
// 				}
// 			}
// 			return ret;
// 		}
// 	};
// 	vector<node> d;
// 	vector<int> c;
// 	int n;

// 	void build(int l, int r, int i) {
// 		if(l == r) {
// 			d[i] = c[l];
// 			return;
// 		}
// 		int m = (l + r) / 2;
// 		build(l, m, i * 2);
// 		build(m + 1, r, i * 2 + 1);
// 		d[i] = d[i * 2] + d[i * 2 + 1];
// 	}

// 	segTreeBeats(int _n, vector<int> _c) {
// 		n = _n;
// 		c = _c;
// 		d.resize(n * 4 + 10);
// 		build(0, n - 1, 1);
// 	}

// 	void ADD(int i, int l, int r, long long v) {
// 		d[i].sum += 1LL * v * (r - l + 1);
// 		d[i].mx1 += v; d[i].mn1 += v; 
// 		if(d[i].mx2 != -inf) d[i].mx2 += v;
// 		if(d[i].mn2 != inf) d[i].mn2 += v;
// 		d[i].lz += v;
// 	}

// 	void MNN(int i, int l, int r, long long v) {
// 		if(v >= d[i].mx1) return;
// 		d[i].sum -= d[i].mxc * d[i].mx1;
// 		d[i].mx1 = v;
// 		d[i].sum += d[i].mxc * d[i].mx1;
// 		if(l == r) d[i].mn1 = d[i].mx1;
// 		else { 
// 			if(d[i].mn1 >= v) d[i].mn1 = v;
// 			else if(d[i].mn2 > v) d[i].mn2 = v;
// 		}
// 	}

// 	void MXX(int i, int l, int r, long long v) {
// 		if(v <= d[i].mn1) return;
// 		d[i].sum -= d[i].mnc * d[i].mn1;
// 		d[i].mn1 = v;
// 		d[i].sum += d[i].mnc * d[i].mn1;
// 		if(l == r) d[i].mx1 = d[i].mn1;
// 		else { 
// 			if(d[i].mx1 <= v) d[i].mx1 = v;
// 			else if(d[i].mn2 < v) d[i].mx2 = v;
// 		}
// 	}

// 	void pro(int i, int l, int r) {
// 		if(l == r) return;
// 		int m = (l + r) / 2;
// 		ADD(i * 2, l, m, d[i].lz);
// 		ADD(i * 2 + 1, m + 1, r, d[i].lz);
// 		d[i].lz = 0;

// 		MNN(i * 2, l, m, d[i].mx1);
// 		MNN(i * 2 + 1, m + 1, r, d[i].mx1);

// 		MXX(i * 2, l, m, d[i].mn1);
// 		MXX(i * 2 + 1, m + 1, r, d[i].mn1);
// 	}

// 	void Add(int l, int r, int i, int x, int y, long long v) {
// 		if(l > y || r < x) return;
// 		if(l >= x && r <= y) {
// 			ADD(i, l, r, v);
// 			return;
// 		}
// 		pro(i, l, r);
// 		int m = (l + r) / 2;
// 		Add(l, m, i * 2, x, y, v);
// 		Add(m + 1, r, i * 2 + 1, x, y, v);
// 		d[i] = d[i * 2] + d[i * 2 + 1];
// 	}

// 	void Mnn(int l, int r, int i, int x, int y, long long v) {
// 		if(l > y || r < x || d[i].mx1 <= v) return;
// 		if(l >= x && r <= y && d[i].mx2 < v) {
// 			MNN(i, l, r, v);
// 			return;
// 		}
// 		pro(i, l, r);
// 		int m = (l + r) / 2;
// 		Mnn(l, m, i * 2, x, y, v);
// 		Mnn(m + 1, r, i * 2 + 1, x, y, v);
// 		d[i] = d[i * 2] + d[i * 2 + 1];
// 	}

// 	void Mxx(int l, int r, int i, int x, int y, long long v) {
// 		if(l > y || r < x || d[i].mn1 >= v) return;
// 		if(l >= x && r <= y && d[i].mn2 > v) {
// 			MXX(i, l, r, v);
// 			return;
// 		}
// 		pro(i, l, r);
// 		int m = (l + r) / 2;
// 		Mxx(l, m, i * 2, x, y, v);
// 		Mxx(m + 1, r, i * 2 + 1, x, y, v);
// 		d[i] = d[i * 2] + d[i * 2 + 1];
// 	}

// 	void add(int l, int r, long long v) {
// 		Add(0, n - 1, 1, l, r, v);
// 	}

// 	void mnn(int l, int r, long long v) {
// 		Mnn(0, n - 1, 1, l, r, v);
// 	}

// 	void mxx(int l, int r, long long v) {
// 		Mxx(0, n - 1, 1, l, r, v);
// 	}

// 	long long GetSum(int l, int r, int i, int x, int y) {
// 		if(l >= x && r <= y) return d[i].sum;
// 		if(l > y || r < x) return 0LL;
// 		pro(i, l, r);
// 		int m = (l + r) / 2;
// 		return GetSum(l, m, i * 2, x, y) + GetSum(m + 1, r, i * 2 + 1, x, y);
// 	}

// 	long long getSum(int l, int r) {
// 		return GetSum(0, n - 1, 1, l, r);
// 	}
// };
struct segTreeBeat {
	int l, r, m;
	long long sum, max1, max2, min1, min2, maxc, minc, lz;
	segTreeBeat *le, *ri;

	void up() {
		assert(le != NULL);
		assert(ri != NULL);
		sum = le->sum + ri->sum;

		max1 = max(le->max1, ri->max1);
		min1 = min(le->min1, ri->min1);

		max2 = -inf;
		min2 = inf;

		if(le->max1 == ri->max1) {
			maxc = le->maxc + ri->maxc;
			max2 = max(le->max2, ri->max2);
		} else {
			if(le->max1 > ri->max1) {
				maxc = le->maxc;
				max2 = max(le->max2, ri->max1);
			} else {
				maxc = ri->maxc;
				max2 = max(le->max1, ri->max2);
			}
		}

		if(le->min1 == ri->min1) {
			minc = le->minc + ri->minc;
			min2 = min(le->min2, ri->min2);
		} else {
			if(le->min1 < ri->min1) {
				minc = le->minc;
				min2 = min(le->min2, ri->min1);
			} else {
				minc = ri->minc;
				min2 = min(le->min1, ri->min2);
			}
		}
	}

	segTreeBeat(int _l, int _r, vector<int> &a) {
		l = _l; r = _r; m = (l + r) / 2;
		lz = 0;
		if(l == r) {
			sum = max1 = min1 = a[l];
			maxc = minc = 1;
			max2 = -inf; min2 = inf;
			le = ri = NULL;
			return;
		}
		le = new segTreeBeat(l, m, a);
		ri = new segTreeBeat(m + 1, r, a);
		up();
	}

	void proAdd(long long x) {
		sum += x * (r - l + 1);
		max1 += x; min1 += x;
		if(max2 != -inf) max2 += x;
		if(min2 != inf) min2 += x;
		lz += x;
	}

	void proMax(long long x) {
		if(x >= max1) return;
		sum -= maxc * max1;
		max1 = x;
		sum += maxc * max1;

		if(l == r) {
			min1 = x;
		} else {
			if(x <= min1) min1 = x;
			else if(x < min2) min2 = x;
		}
	}

	void proMin(long long x) {
		if(x <= min1) return;
		sum -= minc * min1;
		min1 = x;
		sum += minc * min1;

		if(l == r) {
			max1 = x;
		} else {
			if(x >= max1) max1 = x;
			else if(x > max2) max2 = x;
		}
	}

	void pro() {
		if(l == r) return;
		// if(le == NULL) le = new segTreeBeat(l, m);
		// if(ri == NULL) ri = new segTreeBeat(m + 1, r);

		le->proAdd(lz);
		ri->proAdd(lz);
		lz = 0;

		le->proMax(max1);
		ri->proMax(max1);

		le->proMin(min1);
		ri->proMin(min1);
	}

	void add(int x, int y, long long v) {
		if(l > y || r < x) return;
		if(l >= x && r <= y) {
			proAdd(v);
			return;
		} 
		pro();
		le->add(x, y, v);
		ri->add(x, y, v);
		up();
	}

	void mnn(int x, int y, long long v) {
		if(l > y || r < x || max1 <= v) return;
		if(l >= x && r <= y && max2 < v) {
			proMax(v);
			return;
		}
		pro();
		le->mnn(x, y, v);
		ri->mnn(x, y, v);
		up();
	}
	void mxx(int x, int y, long long v) {
		if(l > y || r < x || min1 >= v) return;
		if(l >= x && r <= y && min2 > v) {
			proMin(v);
			return;
		}
		pro();
		le->mxx(x, y, v);
		ri->mxx(x, y, v);
		up();
	}
	long long getSum(int x, int y) {
		if(l > y || r < x) return 0LL;
		if(l >= x && r <= y) return sum;
		pro();
		return le->getSum(x, y) + ri->getSum(x, y);
	}
	long long getMax(int x, int y) {
		if(l > y || r < x) return -inf;
		if(l >= x && r <= y) return max1;
		pro();
		return max(le->getMax(x, y), ri->getMax(x, y));
	}
	long long getMin(int x, int y) {
		if(l > y || r < x) return inf;
		if(l >= x && r <= y) return min1;
		pro();
		return max(le->getMin(x, y), ri->getMin(x, y));
	}
	~segTreeBeat() {
		if(le != NULL) delete le;
		if(ri != NULL) delete ri;
	}
};

vi distribute_candies(vi c, vi l, vi r, vi v) {
	int n = c.size(), q = l.size();
	vector<long long> ret(n);
	if(n * q <= 2000 * 2000) {
		for(int i = 0; i < q; i++) {
			for(int j = l[i]; j <= r[i]; j++) {
				ret[j] += v[i];
				ret[j] = min(1ll * c[j], max(0ll, ret[j]));
			}
		}
		return vector<int>(all(ret));
	}
	if(*min_element(all(v)) >= 0) {
		for(int i = 0; i < q; i++) {
			ret[l[i]] += v[i];
			if(r[i] + 1 < n) ret[r[i] + 1] -= v[i];
		}
		for(int i = 1; i < n; i++) {
			ret[i] += ret[i - 1];
		}
		for(int i = 0; i < n; i++) {
			ret[i] = min(1ll * c[i], max(0ll, ret[i]));
		}
		return vector<int>(all(ret));
	}
	if(*max_element(all(c)) == *min_element(all(c))) {
		vector<int> tmp(n, 0);
		segTreeBeat *st = new segTreeBeat(0, n - 1, tmp);
		for(int i = 0; i < q; i++) {
			st->add(l[i], r[i], v[i]);
			st->mnn(l[i], r[i], c[0]);
			st->mxx(l[i], r[i], 0);
		}
		for(int i = 0; i < n; i++) {
			ret[i] = st->getSum(i, i);
		}
		return vector<int>(all(ret));
	}
	exit(1);
	return vector<int>(all(ret));
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 304 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 312 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 83 ms 9492 KB Output is correct
2 Correct 80 ms 9384 KB Output is correct
3 Correct 81 ms 9420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 300 KB Output is correct
2 Correct 135 ms 5988 KB Output is correct
3 Correct 110 ms 49064 KB Output is correct
4 Correct 466 ms 54040 KB Output is correct
5 Correct 574 ms 54132 KB Output is correct
6 Correct 670 ms 54056 KB Output is correct
7 Correct 629 ms 54044 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Runtime error 40 ms 5296 KB Execution failed because the return code was nonzero
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 304 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 312 KB Output is correct
5 Correct 3 ms 340 KB Output is correct
6 Correct 83 ms 9492 KB Output is correct
7 Correct 80 ms 9384 KB Output is correct
8 Correct 81 ms 9420 KB Output is correct
9 Correct 1 ms 300 KB Output is correct
10 Correct 135 ms 5988 KB Output is correct
11 Correct 110 ms 49064 KB Output is correct
12 Correct 466 ms 54040 KB Output is correct
13 Correct 574 ms 54132 KB Output is correct
14 Correct 670 ms 54056 KB Output is correct
15 Correct 629 ms 54044 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Runtime error 40 ms 5296 KB Execution failed because the return code was nonzero
19 Halted 0 ms 0 KB -