Submission #787305

# Submission time Handle Problem Language Result Execution time Memory
787305 2023-07-19T04:26:05 Z 79brue Paths (RMI21_paths) C++17
100 / 100
460 ms 62596 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

int cnt[800002]; ll sum[800002];

inline void update(int i, int l, int r, int x, int v1, ll v2){
    if(l==r){
        cnt[i] += v1, sum[i] += v2;
        return;
    }
    int m = (l+r)>>1;
    if(x<=m) update(i*2, l, m, x, v1, v2);
    else update(i*2+1, m+1, r, x, v1, v2);
    cnt[i] = cnt[i*2] + cnt[i*2+1], sum[i] = sum[i*2] + sum[i*2+1];
}

inline ll query(int i, int l, int r, int x){
    if(l==r) return cnt[i] ? (sum[i] / cnt[i]) * x : 0;
    int m = (l+r)>>1;
    if(cnt[i*2+1] >= x) return query(i*2+1, m+1, r, x);
    else return query(i*2, l, m, x-cnt[i*2+1]) + sum[i*2+1];
}

struct Edge{
    int s, e; ll v; int idx;
    Edge(){}
    Edge(int s, int e, ll v): s(s), e(e), v(v){}
    bool operator<(const Edge &r)const{
        return idx<r.idx;
    }
};

int n, k;
Edge arr[200002];
vector<Edge> link[100002];
int in[100002], out[100002], idx[100002], inCnt;
int par[100002];

void dfs_in(int x, int p=-1){
    in[x] = ++inCnt;
    idx[inCnt] = x;
    par[x] = p;
    for(auto y: link[x]){
        if(y.e == p) continue;
        dfs_in(y.e, x);
    }
    out[x] = inCnt;
}

vector<Edge> linkSet[100002];
ll MX[200002], where[200002]; /// 이 간선 방향으로 갔을 때 최대가 몇인가
vector<pair<ll, ll> > options[100002]; /// 이 정점에서 나갈 수 있는 모든 옵션

pair<ll, int> dfs_getValues(int x, int p=-1){
//    printf("Get value %d %d\n", x, p);
    if(!linkSet[x].empty()){
        vector<Edge> tlst;
        for(Edge y: linkSet[x]){
            if((y.idx ^ p) == 1){
                tlst.push_back(y);
                continue;
            }
            options[x].push_back(make_pair(MX[y.idx] = (dfs_getValues(y.e, y.idx).first + y.v), y.idx));
        }
        linkSet[x].swap(tlst);
        sort(options[x].begin(), options[x].end());
        options[x].erase(unique(options[x].begin(), options[x].end()), options[x].end());
        reverse(options[x].begin(), options[x].end());
    }
    if(options[x].empty()) return make_pair(0, -1);
    else if((options[x][0].second ^ p) != 1) return options[x][0];
    else if((int)options[x].size() == 1) return make_pair(0, -1);
    else return options[x][1];
}

ll numbers[200002];
vector<ll> inQuery[100002], outQuery[100002];
ll ans[100002];

void putQuery(int s, int e, ll p, int mode){
    if(in[s] < in[e]){
        if(mode == 1){
            inQuery[1].push_back(p), outQuery[in[e]].push_back(p);
            if(out[e]+1 <= n+1) inQuery[out[e]+1].push_back(p), outQuery[n+1].push_back(p);
        }
        else{
            outQuery[1].push_back(p), inQuery[in[e]].push_back(p);
            if(out[e]+1 <= n+1) outQuery[out[e]+1].push_back(p), inQuery[n+1].push_back(p);
        }
    }
    else{
        if(mode == 1) inQuery[in[s]].push_back(p), outQuery[out[s]+1].push_back(p);
        else          outQuery[in[s]].push_back(p), inQuery[out[s]+1].push_back(p);
    }
}

int main(){
    scanf("%d %d", &n, &k);
    for(int i=1; i<n; i++){
        scanf("%d %d %lld", &arr[i*2-2].s, &arr[i*2-2].e, &arr[i*2-2].v);
        arr[i*2-1].s = arr[i*2-2].e, arr[i*2-1].e = arr[i*2-2].s, arr[i*2-1].v = arr[i*2-2].v;
        arr[i*2-2].idx = i*2-2, arr[i*2-1].idx = i*2-1;
        link[arr[i*2-2].s].push_back(arr[i*2-2]);
        link[arr[i*2-1].s].push_back(arr[i*2-1]);
    }
    for(int i=1; i<=n; i++) linkSet[i] = link[i];

    dfs_in(1);
    for(int i=0; i<(n-1)*2; i++){
        if(MX[i]) continue;
        pair<ll, int> p = dfs_getValues(arr[i].e, i);
        MX[i] = p.first + arr[i].v;
        where[i] = p.second;
    }
    for(int i=1; i<=n; i++) options[i].clear();
    for(int i=0; i<(n-1)*2; i++){
        options[arr[i].s].push_back(make_pair(MX[i], i));
    }
    for(int i=1; i<=n; i++) sort(options[i].rbegin(), options[i].rend());

    for(int i=1; i<=n; i++){
        /// 수는 최대 2N개
        for(int j=0; j<(int)options[i].size(); j++){
            int p = options[i][j].second; ll v = options[i][j].first;
            int s = arr[p].s, e = arr[p].e;
            putQuery(s, e, v, 1);
            if(where[p] != -1) putQuery(s, e, v-arr[p].v, -1);
        }
    }

    numbers[0] = 0;
    for(int i=0; i<(n-1)*2; i++) numbers[i+1] = MX[i];
    sort(numbers, numbers+n*2-1);
    int L = unique(numbers, numbers+n*2-1) - numbers;
    for(int i=1; i<=n; i++) for(ll &p: inQuery[i]) p = lower_bound(numbers, numbers+L, p) - numbers;
    for(int i=1; i<=n; i++) for(ll &p: outQuery[i]) p = lower_bound(numbers, numbers+L, p) - numbers;

    for(int i=1; i<=n; i++){
        for(ll p: inQuery[i]){
//            printf("In update %d %lld\n", i, numbers[p]);
            update(1, 0, L-1, p, 1, numbers[p]);
        }
        for(ll p: outQuery[i]){
//            printf("Out update %d %lld\n", i, numbers[p]);
            update(1, 0, L-1, p, -1, -numbers[p]);
        }
        ans[idx[i]] = query(1, 0, L-1, k);
    }

    for(int i=1; i<=n; i++){
        printf("%lld\n", ans[i]);
    }
}

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:101:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  101 |     scanf("%d %d", &n, &k);
      |     ~~~~~^~~~~~~~~~~~~~~~~
Main.cpp:103:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  103 |         scanf("%d %d %lld", &arr[i*2-2].s, &arr[i*2-2].e, &arr[i*2-2].v);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12116 KB Output is correct
2 Correct 6 ms 12116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12116 KB Output is correct
2 Correct 6 ms 12116 KB Output is correct
3 Correct 6 ms 12116 KB Output is correct
4 Correct 7 ms 12116 KB Output is correct
5 Correct 6 ms 12196 KB Output is correct
6 Correct 6 ms 12132 KB Output is correct
7 Correct 7 ms 12196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12116 KB Output is correct
2 Correct 6 ms 12116 KB Output is correct
3 Correct 6 ms 12116 KB Output is correct
4 Correct 7 ms 12116 KB Output is correct
5 Correct 6 ms 12196 KB Output is correct
6 Correct 6 ms 12132 KB Output is correct
7 Correct 7 ms 12196 KB Output is correct
8 Correct 9 ms 12500 KB Output is correct
9 Correct 8 ms 12596 KB Output is correct
10 Correct 8 ms 12492 KB Output is correct
11 Correct 8 ms 12500 KB Output is correct
12 Correct 8 ms 12456 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12116 KB Output is correct
2 Correct 6 ms 12116 KB Output is correct
3 Correct 6 ms 12116 KB Output is correct
4 Correct 7 ms 12116 KB Output is correct
5 Correct 6 ms 12196 KB Output is correct
6 Correct 6 ms 12132 KB Output is correct
7 Correct 7 ms 12196 KB Output is correct
8 Correct 9 ms 12500 KB Output is correct
9 Correct 8 ms 12596 KB Output is correct
10 Correct 8 ms 12492 KB Output is correct
11 Correct 8 ms 12500 KB Output is correct
12 Correct 8 ms 12456 KB Output is correct
13 Correct 12 ms 12992 KB Output is correct
14 Correct 11 ms 13012 KB Output is correct
15 Correct 11 ms 13012 KB Output is correct
16 Correct 10 ms 12968 KB Output is correct
17 Correct 13 ms 12884 KB Output is correct
18 Correct 9 ms 12872 KB Output is correct
19 Correct 11 ms 13012 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 460 ms 58096 KB Output is correct
2 Correct 400 ms 59628 KB Output is correct
3 Correct 392 ms 57000 KB Output is correct
4 Correct 451 ms 57880 KB Output is correct
5 Correct 403 ms 59680 KB Output is correct
6 Correct 441 ms 58080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 12116 KB Output is correct
2 Correct 6 ms 12116 KB Output is correct
3 Correct 6 ms 12116 KB Output is correct
4 Correct 7 ms 12116 KB Output is correct
5 Correct 6 ms 12196 KB Output is correct
6 Correct 6 ms 12132 KB Output is correct
7 Correct 7 ms 12196 KB Output is correct
8 Correct 9 ms 12500 KB Output is correct
9 Correct 8 ms 12596 KB Output is correct
10 Correct 8 ms 12492 KB Output is correct
11 Correct 8 ms 12500 KB Output is correct
12 Correct 8 ms 12456 KB Output is correct
13 Correct 12 ms 12992 KB Output is correct
14 Correct 11 ms 13012 KB Output is correct
15 Correct 11 ms 13012 KB Output is correct
16 Correct 10 ms 12968 KB Output is correct
17 Correct 13 ms 12884 KB Output is correct
18 Correct 9 ms 12872 KB Output is correct
19 Correct 11 ms 13012 KB Output is correct
20 Correct 460 ms 58096 KB Output is correct
21 Correct 400 ms 59628 KB Output is correct
22 Correct 392 ms 57000 KB Output is correct
23 Correct 451 ms 57880 KB Output is correct
24 Correct 403 ms 59680 KB Output is correct
25 Correct 441 ms 58080 KB Output is correct
26 Correct 441 ms 58548 KB Output is correct
27 Correct 421 ms 60204 KB Output is correct
28 Correct 398 ms 61204 KB Output is correct
29 Correct 380 ms 57072 KB Output is correct
30 Correct 444 ms 58260 KB Output is correct
31 Correct 344 ms 53408 KB Output is correct
32 Correct 409 ms 60144 KB Output is correct
33 Correct 455 ms 58476 KB Output is correct
34 Correct 358 ms 57116 KB Output is correct
35 Correct 430 ms 58160 KB Output is correct
36 Correct 379 ms 62596 KB Output is correct