Submission #762594

# Submission time Handle Problem Language Result Execution time Memory
762594 2023-06-21T14:27:51 Z GrindMachine Rigged Roads (NOI19_riggedroads) C++17
100 / 100
495 ms 81608 KB
// Om Namah Shivaya
 
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
 
using namespace std;
using namespace __gnu_pbds;
 
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
 
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
 
#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)
 
template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}
 
template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}
 
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
 
/*
 
 
 
*/
 
const int MOD = 1e9 + 7;
const int N = 3e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
 
struct DSU {
    vector<int> par, rankk, siz;
    vector<pii> mn_depth;

    DSU() {

    }

    DSU(int n) {
        init(n);
    }

    void init(int n) {
        par = vector<int>(n + 1);
        rankk = vector<int>(n + 1);
        siz = vector<int>(n + 1);
        mn_depth = vector<pii>(n + 1);
        rep(i, n + 1) create(i);
    }

    void create(int u) {
        par[u] = u;
        rankk[u] = 0;
        siz[u] = 1;
    }

    int find(int u) {
        if (u == par[u]) return u;
        else return par[u] = find(par[u]);
    }

    bool same(int u, int v) {
        return find(u) == find(v);
    }

    void merge(int u, int v) {
        u = find(u), v = find(v);
        if (u == v) return;

        if (rankk[u] == rankk[v]) rankk[u]++;
        if (rankk[u] < rankk[v]) swap(u, v);

        par[v] = u;
        siz[u] += siz[v];
        amin(mn_depth[u], mn_depth[v]);
    }
};

vector<pii> adj[N];

struct lca_algo {
    // LCA template (for graphs with 1-based indexing)

    int LOG = 1;
    vector<int> depth;
    vector<vector<int>> up;
    vector<int> tin, tout;

    lca_algo() {

    }

    lca_algo(int n) {
        lca_init(n);
    }

    void lca_init(int n) {
        while ((1 << LOG) < n) LOG++;
        up = vector<vector<int>>(n + 1, vector<int>(LOG, 1));
        depth = vector<int>(n + 1);
        tin = vector<int>(n + 1);
        tout = vector<int>(n + 1);

        lca_dfs(1, -1);
    }

    int timer = 1;

    void lca_dfs(int node, int par) {
        tin[node] = timer++;

        for(auto [child,id] : adj[node]) {
            if (child == par) conts;

            up[child][0] = node;
            rep1(j, LOG - 1) {
                up[child][j] = up[up[child][j - 1]][j - 1];
            }

            depth[child] = depth[node] + 1;

            lca_dfs(child, node);
        }

        tout[node] = timer++;
    }

    int lift(int u, int k) {
        rep(j, LOG) {
            if (k & (1 << j)) {
                u = up[u][j];
            }
        }

        return u;
    }

    int query(int u, int v) {
        if (depth[u] < depth[v]) swap(u, v);
        int k = depth[u] - depth[v];
        u = lift(u, k);

        if (u == v) return u;

        rev(j, LOG - 1, 0) {
            if (up[u][j] != up[v][j]) {
                u = up[u][j];
                v = up[v][j];
            }
        }

        u = up[u][0];
        return u;
    }

    int get_dis(int u, int v) {
        int lca = query(u, v);
        return depth[u] + depth[v] - 2 * depth[lca];
    }

    bool ances(ll u, ll v){
        if(tin[u] <= tin[v] and tout[u] >= tout[v]){
            return true;
        }
        else{
            return false;
        }
    }
};

vector<pii> par(N);

void dfs(int u, int p){
    for(auto [v,id] : adj[u]){
        if(v == p) conts;
        par[v] = {u,id};
        dfs(v,u);
    }
}

void solve(int test_case)
{
    int n,m; cin >> n >> m;
    vector<pii> edges(m+5);
 
    rep1(i,m){
        int u,v; cin >> u >> v;
        edges[i] = {u,v};
    }
 
    vector<bool> in_mst(m+5);
    rep1(i,n-1){
        int id; cin >> id;
        in_mst[id] = 1;
        auto [u,v] = edges[id];
        adj[u].pb({v,id}), adj[v].pb({u,id});
    }

    lca_algo LCA(n);
    dfs(1,-1);

    DSU dsu(n+5);
    rep1(i,n) dsu.mn_depth[i] = {LCA.depth[i],i};

    vector<int> ans(m+5,-1);
    int ptr = 1;

    rep1(i,m){
        if(ans[i] != -1) conts;
        if(in_mst[i]){
            ans[i] = ptr++;
            dsu.merge(edges[i].ff, edges[i].ss);
            conts;
        }
        
        auto [u,v] = edges[i];
        int lca = LCA.query(u,v);

        vector<int> ids;

        while(true){
            auto [mn_depth, ances] = dsu.mn_depth[dsu.find(u)];
            u = ances;
            if(LCA.ances(u,lca)) break;

            auto [p,id] = par[u];
            ids.pb(id);
            dsu.merge(edges[id].ff, edges[id].ss);
        }

        while(true){
            auto [mn_depth, ances] = dsu.mn_depth[dsu.find(v)];
            v = ances;
            if(LCA.ances(v,lca)) break;

            auto [p,id] = par[v];
            ids.pb(id);
            dsu.merge(edges[id].ff, edges[id].ss);
        }

        sort(all(ids));

        trav(id,ids){
            assert(ans[id] == -1);
            ans[id] = ptr++;
        }

        ans[i] = ptr++;
    }
 
    rep1(i,m) cout << ans[i] << " ";
    cout << endl;
}
 
int main()
{
    fastio;
 
    int t = 1;
    // cin >> t;
 
    rep1(i, t) {
        solve(i);
    }
 
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 9684 KB Output is correct
2 Correct 6 ms 9684 KB Output is correct
3 Correct 5 ms 9680 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 9684 KB Output is correct
2 Correct 6 ms 9684 KB Output is correct
3 Correct 5 ms 9680 KB Output is correct
4 Correct 5 ms 9864 KB Output is correct
5 Correct 6 ms 9772 KB Output is correct
6 Correct 5 ms 9812 KB Output is correct
7 Correct 5 ms 9812 KB Output is correct
8 Correct 5 ms 9812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 53 ms 29708 KB Output is correct
2 Correct 106 ms 37568 KB Output is correct
3 Correct 77 ms 21236 KB Output is correct
4 Correct 165 ms 69712 KB Output is correct
5 Correct 150 ms 72580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 101 ms 36024 KB Output is correct
2 Correct 54 ms 20824 KB Output is correct
3 Correct 29 ms 15436 KB Output is correct
4 Correct 65 ms 29088 KB Output is correct
5 Correct 25 ms 17620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 197 ms 63964 KB Output is correct
2 Correct 226 ms 70300 KB Output is correct
3 Correct 50 ms 26680 KB Output is correct
4 Correct 77 ms 35424 KB Output is correct
5 Correct 265 ms 81608 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 215 ms 46004 KB Output is correct
2 Correct 139 ms 34780 KB Output is correct
3 Correct 470 ms 73404 KB Output is correct
4 Correct 420 ms 65552 KB Output is correct
5 Correct 21 ms 15136 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 9684 KB Output is correct
2 Correct 6 ms 9684 KB Output is correct
3 Correct 5 ms 9680 KB Output is correct
4 Correct 5 ms 9864 KB Output is correct
5 Correct 6 ms 9772 KB Output is correct
6 Correct 5 ms 9812 KB Output is correct
7 Correct 5 ms 9812 KB Output is correct
8 Correct 5 ms 9812 KB Output is correct
9 Correct 53 ms 29708 KB Output is correct
10 Correct 106 ms 37568 KB Output is correct
11 Correct 77 ms 21236 KB Output is correct
12 Correct 165 ms 69712 KB Output is correct
13 Correct 150 ms 72580 KB Output is correct
14 Correct 101 ms 36024 KB Output is correct
15 Correct 54 ms 20824 KB Output is correct
16 Correct 29 ms 15436 KB Output is correct
17 Correct 65 ms 29088 KB Output is correct
18 Correct 25 ms 17620 KB Output is correct
19 Correct 197 ms 63964 KB Output is correct
20 Correct 226 ms 70300 KB Output is correct
21 Correct 50 ms 26680 KB Output is correct
22 Correct 77 ms 35424 KB Output is correct
23 Correct 265 ms 81608 KB Output is correct
24 Correct 215 ms 46004 KB Output is correct
25 Correct 139 ms 34780 KB Output is correct
26 Correct 470 ms 73404 KB Output is correct
27 Correct 420 ms 65552 KB Output is correct
28 Correct 21 ms 15136 KB Output is correct
29 Correct 493 ms 62868 KB Output is correct
30 Correct 495 ms 66560 KB Output is correct
31 Correct 388 ms 71248 KB Output is correct
32 Correct 100 ms 20784 KB Output is correct
33 Correct 376 ms 71560 KB Output is correct