#include<bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
using namespace std;
#define ll long long
#define fi first
#define se second
#define pb push_back
#define mp make_pair
typedef pair<int, int> ii;
typedef pair<ii, int> iii;
typedef pair<ii, ii> iiii;
const int N = 1e6 + 5;
const int oo = 1e18 + 7, mod = 1e9 + 7;
mt19937 rng(1);
int n;
vector<int> Adj[N];
vector<ii> edges;
int deg[N], mx_deg;
int cur_ans = 0;
int szz[N], rtt[N];
void Init(int N_) {
n = N_;
for(int i = 1; i <= n; i++){
szz[i] = 1, rtt[i] = i;
}
cur_ans = n;
}
int cnt;
vector<int> candidates;
int deg2[N][8], mxdeg[8];
bool out[N];
int sz[N][8], rt[N][8];
void init(int ind){
for(int i = 1; i <= n; i++){
sz[i][ind] = 1, rt[i][ind] = i;
deg2[i][ind] = 0;
}
mxdeg[ind] = 0;
out[ind] = 0;
}
int root(int x, int ind){
return (x == rt[x][ind] ? x : rt[x][ind] = root(rt[x][ind], ind));
}
bool merge(int x, int y, int ind){
x = root(x, ind), y = root(y, ind);
if(x == y) return 0;
if(sz[x][ind] < sz[y][ind]) swap(x, y);
sz[x][ind] += sz[y][ind];
rt[y][ind] = x;
return 1;
}
void add_edge(int x, int y, int ind){
if(x == candidates[ind - 1] || y == candidates[ind - 1]) return;
deg2[x][ind]++, deg2[y][ind]++;
mxdeg[ind] = max(mxdeg[ind], deg2[x][ind]);
mxdeg[ind] = max(mxdeg[ind], deg2[y][ind]);
out[ind] |= (!merge(x, y, ind));
out[ind] |= (mxdeg[ind] >= 3);
}
int roott(int x){
return (x == rtt[x] ? x : rtt[x] = roott(rtt[x]));
}
bool mergee(int x, int y){
x = roott(x), y = roott(y);
if(x == y) return 0;
if(szz[x] < szz[y]) swap(x, y);
szz[x] += szz[y];
rtt[y] = x;
return 1;
}
int tol_cyc = 0;
int d[N];
vector<int> Ad[N];
void dfs(int u, int p){
for(auto v : Adj[u]){
if(v == p) continue;
d[v] = d[u] + 1;
dfs(v, u);
}
}
set<int> se;
void Link(int A, int B) {
A++, B++;
//Adj[A].pb(B);
//Adj[B].pb(A);
Ad[A].pb(B);
Ad[B].pb(A);
//if(deg[A] == 3) se.erase(A);
//if(deg[B] == 3) se.erase(B);
edges.pb({A, B});
int old = mx_deg;
//se.erase({deg[A], A});
//se.erase({deg[B], B});
deg[A]++;
deg[B]++;
if(deg[A] == 3 && se.size() <= 4) se.insert(A);
if(deg[B] == 3 && se.size() <= 4) se.insert(B);
//se.insert({deg[A], A});
//se.insert({deg[B], B});
mx_deg = max(mx_deg, deg[A]);
mx_deg = max(mx_deg, deg[B]);
if(mx_deg <= 2){
if(tol_cyc >= 2) return;
int lst = tol_cyc;
tol_cyc += (!mergee(A, B));
if(tol_cyc == 2) cur_ans = 0;
else if(!tol_cyc) cur_ans = n;
else{
if(lst == 1) return;
for(int i = 0; (i + 1) < edges.size(); i++){
Adj[edges[i].fi].pb(edges[i].se);
Adj[edges[i].se].pb(edges[i].fi);
}
dfs(A, A);
cur_ans = d[B] + 1;
}
}
else if(mx_deg == 3){
// cout << "OK " << cnt << "\n";
int counter = se.size();
if(counter > 4){
cur_ans = 0;
return;
}
int lst_cnt = cnt;
if(deg[A] >= 3){
bool ck = 1;
for(auto it : candidates) ck &= (it != A);
if(ck){
cnt++;
init(cnt);
candidates.pb(A);
for(auto it : edges) add_edge(it.fi, it.se, cnt);
}
for(auto it : Ad[A]){
bool ck = 1;
for(auto it2 : candidates) ck &= (it != it2);
int cn = 0;
for(auto it2 : Ad[it]) cn += (deg[it2] >= 3);
ck &= (cn == counter);
if(ck){
cnt++;
init(cnt);
candidates.pb(it);
for(auto it2 : edges) add_edge(it2.fi, it2.se, cnt);
}
}
}
if(deg[B] >= 3){
bool ck = 1;
for(auto it : candidates) ck &= (it != B);
if(ck){
cnt++;
init(cnt);
candidates.pb(B);
for(auto it : edges) add_edge(it.fi, it.se, cnt);
}
for(auto it : Ad[B]){
bool ck = 1;
for(auto it2 : candidates) ck &= (it != it2);
int cn = 0;
for(auto it2 : Ad[it]) cn += (deg[it2] >= 3);
ck &= (cn == counter);
if(ck){
cnt++;
init(cnt);
candidates.pb(it);
for(auto it2 : edges) add_edge(it2.fi, it2.se, cnt);
}
}
}
// exit(0);
for(int i = 1; i <= lst_cnt; i++) add_edge(A, B, i);
cur_ans = 0;
for(int i = 1; i <= cnt; i++) cur_ans += (!out[i]);
}
else{
//cout << "OK\n";
if(old < 4){
candidates.clear();
cnt = 0;
}
else{
if(cnt >= 2) return;
}
if(deg[A] >= 4){
bool ck = 1;
for(auto it : candidates) ck &= (it != A);
if(ck){
cnt++;
candidates.pb(A);
}
}
if(deg[B] >= 4){
bool ck = 1;
for(auto it : candidates) ck &= (it != B);
if(ck){
cnt++;
candidates.pb(B);
}
}
// cout << cnt << "\n";
if(cnt >= 2){
cur_ans = 0;
return;
}
if(old < 4){// build new graph
init(1);
assert(cnt == 1);
for(auto it : edges) add_edge(it.fi, it.se, 1);
}
else{
add_edge(A, B, 1);
}
cur_ans = (!out[1]);
}
}
int CountCritical() {
return cur_ans;
}
/*
void process(){
int n;
cin >> n;
Init(n);
int m;
cin >> m;
for(int i = 1; i <= m; i++){
int x, y;
cin >> x >> y;
Link(x, y);
cout << CountCritical() << "\n";
}
}
signed main(){
process();
}*/
Compilation message
rings.cpp:18:21: warning: overflow in conversion from 'double' to 'int' changes value from '1.0e+18' to '2147483647' [-Woverflow]
18 | const int oo = 1e18 + 7, mod = 1e9 + 7;
| ~~~~~^~~
rings.cpp: In function 'void Link(int, int)':
rings.cpp:138:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
138 | for(int i = 0; (i + 1) < edges.size(); i++){
| ~~~~~~~~^~~~~~~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
47240 KB |
Output is correct |
2 |
Correct |
27 ms |
47900 KB |
Output is correct |
3 |
Correct |
26 ms |
48084 KB |
Output is correct |
4 |
Correct |
26 ms |
47308 KB |
Output is correct |
5 |
Correct |
30 ms |
47620 KB |
Output is correct |
6 |
Correct |
28 ms |
47816 KB |
Output is correct |
7 |
Correct |
29 ms |
47868 KB |
Output is correct |
8 |
Correct |
31 ms |
47700 KB |
Output is correct |
9 |
Correct |
32 ms |
48076 KB |
Output is correct |
10 |
Correct |
28 ms |
48060 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
411 ms |
74056 KB |
Output is correct |
2 |
Correct |
1181 ms |
163292 KB |
Output is correct |
3 |
Correct |
886 ms |
188112 KB |
Output is correct |
4 |
Correct |
1485 ms |
131244 KB |
Output is correct |
5 |
Correct |
1505 ms |
134252 KB |
Output is correct |
6 |
Correct |
1582 ms |
147152 KB |
Output is correct |
7 |
Correct |
841 ms |
186996 KB |
Output is correct |
8 |
Correct |
1576 ms |
182932 KB |
Output is correct |
9 |
Correct |
2008 ms |
205328 KB |
Output is correct |
10 |
Correct |
954 ms |
139768 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
47240 KB |
Output is correct |
2 |
Correct |
27 ms |
47900 KB |
Output is correct |
3 |
Correct |
26 ms |
48084 KB |
Output is correct |
4 |
Correct |
26 ms |
47308 KB |
Output is correct |
5 |
Correct |
30 ms |
47620 KB |
Output is correct |
6 |
Correct |
28 ms |
47816 KB |
Output is correct |
7 |
Correct |
29 ms |
47868 KB |
Output is correct |
8 |
Correct |
31 ms |
47700 KB |
Output is correct |
9 |
Correct |
32 ms |
48076 KB |
Output is correct |
10 |
Correct |
28 ms |
48060 KB |
Output is correct |
11 |
Correct |
28 ms |
48048 KB |
Output is correct |
12 |
Correct |
32 ms |
49168 KB |
Output is correct |
13 |
Correct |
31 ms |
48924 KB |
Output is correct |
14 |
Correct |
28 ms |
48736 KB |
Output is correct |
15 |
Correct |
35 ms |
49752 KB |
Output is correct |
16 |
Correct |
29 ms |
48204 KB |
Output is correct |
17 |
Correct |
32 ms |
48940 KB |
Output is correct |
18 |
Correct |
31 ms |
50048 KB |
Output is correct |
19 |
Correct |
32 ms |
48284 KB |
Output is correct |
20 |
Correct |
31 ms |
48952 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
47240 KB |
Output is correct |
2 |
Correct |
27 ms |
47900 KB |
Output is correct |
3 |
Correct |
26 ms |
48084 KB |
Output is correct |
4 |
Correct |
26 ms |
47308 KB |
Output is correct |
5 |
Correct |
30 ms |
47620 KB |
Output is correct |
6 |
Correct |
28 ms |
47816 KB |
Output is correct |
7 |
Correct |
29 ms |
47868 KB |
Output is correct |
8 |
Correct |
31 ms |
47700 KB |
Output is correct |
9 |
Correct |
32 ms |
48076 KB |
Output is correct |
10 |
Correct |
28 ms |
48060 KB |
Output is correct |
11 |
Correct |
28 ms |
48048 KB |
Output is correct |
12 |
Correct |
32 ms |
49168 KB |
Output is correct |
13 |
Correct |
31 ms |
48924 KB |
Output is correct |
14 |
Correct |
28 ms |
48736 KB |
Output is correct |
15 |
Correct |
35 ms |
49752 KB |
Output is correct |
16 |
Correct |
29 ms |
48204 KB |
Output is correct |
17 |
Correct |
32 ms |
48940 KB |
Output is correct |
18 |
Correct |
31 ms |
50048 KB |
Output is correct |
19 |
Correct |
32 ms |
48284 KB |
Output is correct |
20 |
Correct |
31 ms |
48952 KB |
Output is correct |
21 |
Correct |
38 ms |
49280 KB |
Output is correct |
22 |
Correct |
51 ms |
50360 KB |
Output is correct |
23 |
Correct |
56 ms |
51104 KB |
Output is correct |
24 |
Correct |
93 ms |
59284 KB |
Output is correct |
25 |
Correct |
43 ms |
58316 KB |
Output is correct |
26 |
Correct |
72 ms |
60184 KB |
Output is correct |
27 |
Correct |
73 ms |
53956 KB |
Output is correct |
28 |
Correct |
74 ms |
60480 KB |
Output is correct |
29 |
Correct |
69 ms |
59868 KB |
Output is correct |
30 |
Correct |
85 ms |
56384 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
47240 KB |
Output is correct |
2 |
Correct |
27 ms |
47900 KB |
Output is correct |
3 |
Correct |
26 ms |
48084 KB |
Output is correct |
4 |
Correct |
26 ms |
47308 KB |
Output is correct |
5 |
Correct |
30 ms |
47620 KB |
Output is correct |
6 |
Correct |
28 ms |
47816 KB |
Output is correct |
7 |
Correct |
29 ms |
47868 KB |
Output is correct |
8 |
Correct |
31 ms |
47700 KB |
Output is correct |
9 |
Correct |
32 ms |
48076 KB |
Output is correct |
10 |
Correct |
28 ms |
48060 KB |
Output is correct |
11 |
Correct |
411 ms |
74056 KB |
Output is correct |
12 |
Correct |
1181 ms |
163292 KB |
Output is correct |
13 |
Correct |
886 ms |
188112 KB |
Output is correct |
14 |
Correct |
1485 ms |
131244 KB |
Output is correct |
15 |
Correct |
1505 ms |
134252 KB |
Output is correct |
16 |
Correct |
1582 ms |
147152 KB |
Output is correct |
17 |
Correct |
841 ms |
186996 KB |
Output is correct |
18 |
Correct |
1576 ms |
182932 KB |
Output is correct |
19 |
Correct |
2008 ms |
205328 KB |
Output is correct |
20 |
Correct |
954 ms |
139768 KB |
Output is correct |
21 |
Correct |
28 ms |
48048 KB |
Output is correct |
22 |
Correct |
32 ms |
49168 KB |
Output is correct |
23 |
Correct |
31 ms |
48924 KB |
Output is correct |
24 |
Correct |
28 ms |
48736 KB |
Output is correct |
25 |
Correct |
35 ms |
49752 KB |
Output is correct |
26 |
Correct |
29 ms |
48204 KB |
Output is correct |
27 |
Correct |
32 ms |
48940 KB |
Output is correct |
28 |
Correct |
31 ms |
50048 KB |
Output is correct |
29 |
Correct |
32 ms |
48284 KB |
Output is correct |
30 |
Correct |
31 ms |
48952 KB |
Output is correct |
31 |
Correct |
38 ms |
49280 KB |
Output is correct |
32 |
Correct |
51 ms |
50360 KB |
Output is correct |
33 |
Correct |
56 ms |
51104 KB |
Output is correct |
34 |
Correct |
93 ms |
59284 KB |
Output is correct |
35 |
Correct |
43 ms |
58316 KB |
Output is correct |
36 |
Correct |
72 ms |
60184 KB |
Output is correct |
37 |
Correct |
73 ms |
53956 KB |
Output is correct |
38 |
Correct |
74 ms |
60480 KB |
Output is correct |
39 |
Correct |
69 ms |
59868 KB |
Output is correct |
40 |
Correct |
85 ms |
56384 KB |
Output is correct |
41 |
Correct |
212 ms |
66844 KB |
Output is correct |
42 |
Correct |
695 ms |
162204 KB |
Output is correct |
43 |
Correct |
294 ms |
152556 KB |
Output is correct |
44 |
Correct |
651 ms |
191976 KB |
Output is correct |
45 |
Correct |
718 ms |
187668 KB |
Output is correct |
46 |
Correct |
941 ms |
126348 KB |
Output is correct |
47 |
Correct |
1408 ms |
141088 KB |
Output is correct |
48 |
Correct |
529 ms |
178428 KB |
Output is correct |
49 |
Correct |
607 ms |
100516 KB |
Output is correct |
50 |
Correct |
699 ms |
100052 KB |
Output is correct |
51 |
Correct |
316 ms |
140652 KB |
Output is correct |
52 |
Correct |
569 ms |
164840 KB |
Output is correct |
53 |
Correct |
527 ms |
178868 KB |
Output is correct |
54 |
Correct |
1398 ms |
175388 KB |
Output is correct |
55 |
Correct |
1128 ms |
187012 KB |
Output is correct |