#include "cyberland.h"
#include <bits/stdc++.h>
#define SZ(s) ((int) ((s).size()))
using namespace std;
const int ZERO = 0;
const int NORMAL = 1;
const int DIV2 = 2;
void upMin(double& res, double val) {
if (res < -0.5) res = val;
else res = min(res, val);
}
// N <= 3
double sub1(
int n, int maxDiv2, int target,
const vector<tuple<int,int,int>>& edges,
const vector<int>& node_types) {
if (target == 0) {
return 0.0;
}
double res = -1;
vector<vector<double>> costs(n, vector<double> (n, -1));
for (auto [u, v, cost] : edges) {
costs[u][v] = costs[v][u] = cost;
}
// go directly from 0 -> target
if (costs[0][target] >= 0)
upMin(res, costs[0][target]);
if (n <= 2) return res;
// go 0 -> other vertex -> target
int other = 3 - target;
if (costs[0][other] >= 0 && costs[other][target] >= 0) {
switch (node_types[other]) {
case NORMAL:
upMin(res, costs[0][other] + costs[other][target]);
break;
case ZERO:
upMin(res, costs[other][target]);
break;
case DIV2:
if (maxDiv2 >= 1) {
upMin(res, costs[0][other] / 2.0 + costs[other][target]);
} else {
upMin(res, costs[0][other] + costs[other][target]);
}
break;
}
}
return res;
}
// All nodes are NORMAL
double sub25(
int n, int target,
const vector<vector<pair<int,int>>>& g) {
const int64_t INF = 1e18;
vector<int64_t> dists(n, INF);
set<pair<int64_t, int>> all;
dists[0] = 0;
all.insert({0LL, 0});
while (!all.empty()) {
auto [dist, u] = *all.begin();
all.erase(all.begin());
if (dist != dists[u]) continue;
for (auto [v, cost] : g[u]) {
int64_t cur = dist + cost;
if (cur < dists[v]) {
dists[v] = cur;
all.insert({cur, v});
}
}
}
if (dists[target] == INF) dists[target] = -1;
return dists[target];
}
// All nodes are NORMAL or ZERO
double sub36(
int n, int target,
const vector<vector<pair<int,int>>>& g,
vector<int>& node_types) {
// BFS to find all reachable ZERO nodes
vector<bool> visited(n, false);
queue<int> qu;
qu.push(0);
visited[0] = true;
while (!qu.empty()) {
int u = qu.front(); qu.pop();
for (auto [v, _] : g[u]) {
if (!visited[v] && v != target) {
visited[v] = true;
qu.push(v);
}
}
}
// Dijkstra from all reachable ZERO nodes
const int64_t INF = 1e18;
vector<int64_t> dists(n, INF);
set<pair<int64_t, int>> all;
node_types[0] = ZERO;
for (int i = 0; i < n; ++i) {
if (visited[i] && node_types[i] == ZERO) {
dists[i] = 0;
all.insert({0LL, i});
}
}
while (!all.empty()) {
auto [dist, u] = *all.begin();
all.erase(all.begin());
if (dist != dists[u]) continue;
for (auto [v, cost] : g[u]) {
int64_t cur = dist + cost;
if (cur < dists[v]) {
dists[v] = cur;
all.insert({cur, v});
}
}
}
if (dists[target] == INF) dists[target] = -1;
return dists[target];
}
double sub47(
int n, int target, int maxDiv2,
const vector<vector<pair<int,int>>>& g,
vector<int>& node_types) {
// BFS to find all reachable ZERO nodes
vector<bool> visited(n, false);
queue<int> qu;
qu.push(0);
visited[0] = true;
while (!qu.empty()) {
int u = qu.front(); qu.pop();
for (auto [v, _] : g[u]) {
if (!visited[v] && v != target) {
visited[v] = true;
qu.push(v);
}
}
}
// Dijkstra from all reachable ZERO nodes
vector<double> dists(n, 1e18);
vector<int> trace(n, -1);
set<pair<double, int>> all;
node_types[0] = ZERO;
for (int i = 0; i < n; ++i) {
if (visited[i] && node_types[i] == ZERO) {
dists[i] = 0;
trace[i] = i;
all.insert({0.0, i});
}
}
for (int div2 = 0; div2 <= maxDiv2; ++div2) {
set<int> next_turn;
vector<double> dist_next_turn(n, 1e18);
while (!all.empty()) {
auto [dist, u] = *all.begin();
all.erase(all.begin());
if (dist != dists[u]) continue;
if (u == target) continue; // must stop when reaching target node
for (auto [v, cost] : g[u]) {
double cur = dist + cost;
if (cur < dists[v]) {
trace[v] = u;
dists[v] = cur;
all.insert({cur, v});
}
cur /= 2.0;
if (node_types[v] == DIV2 && cur < dist_next_turn[v]) {
next_turn.insert(v);
dist_next_turn[v] = cur;
}
}
}
all.clear();
for (int v : next_turn) {
dists[v] = dist_next_turn[v];
all.insert({dists[v], v});
}
}
double res = dists[target];
return (res > 1e17) ? -1 : res;
}
double sub8(
int n, int target, int maxDiv2,
const vector<vector<pair<int,int>>>& g,
vector<int>& node_types) {
maxDiv2 = min(maxDiv2, 70);
return sub47(n, target, maxDiv2, g, node_types);
}
double solve(
int n, int m, int maxDiv2, int target,
vector<int> edge_froms,
vector<int> edge_tos,
vector<int> edge_costs,
vector<int> node_types) {
assert(m == SZ(edge_froms));
assert(m == SZ(edge_tos));
assert(m == SZ(edge_costs));
assert(n == SZ(node_types));
vector<vector<pair<int,int>>> g(n);
for (int i = 0; i < m; ++i) {
int u = edge_froms[i];
int v = edge_tos[i];
int cost = edge_costs[i];
g[u].emplace_back(v, cost);
g[v].emplace_back(u, cost);
}
return sub8(n, target, maxDiv2, g, node_types);
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
468 KB |
Correct. |
2 |
Correct |
31 ms |
424 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
38 ms |
452 KB |
Correct. |
2 |
Correct |
40 ms |
460 KB |
Correct. |
3 |
Correct |
37 ms |
472 KB |
Correct. |
4 |
Correct |
40 ms |
468 KB |
Correct. |
5 |
Correct |
33 ms |
468 KB |
Correct. |
6 |
Correct |
29 ms |
1476 KB |
Correct. |
7 |
Correct |
34 ms |
1484 KB |
Correct. |
8 |
Correct |
16 ms |
2644 KB |
Correct. |
9 |
Correct |
47 ms |
392 KB |
Correct. |
10 |
Correct |
36 ms |
392 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
37 ms |
468 KB |
Correct. |
2 |
Correct |
36 ms |
488 KB |
Correct. |
3 |
Correct |
34 ms |
488 KB |
Correct. |
4 |
Correct |
35 ms |
340 KB |
Correct. |
5 |
Correct |
35 ms |
392 KB |
Correct. |
6 |
Correct |
7 ms |
1452 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
89 ms |
6984 KB |
Correct. |
2 |
Correct |
90 ms |
476 KB |
Correct. |
3 |
Correct |
78 ms |
468 KB |
Correct. |
4 |
Correct |
87 ms |
436 KB |
Correct. |
5 |
Correct |
59 ms |
392 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
29 ms |
464 KB |
Correct. |
2 |
Correct |
33 ms |
444 KB |
Correct. |
3 |
Correct |
31 ms |
468 KB |
Correct. |
4 |
Correct |
27 ms |
1312 KB |
Correct. |
5 |
Correct |
26 ms |
396 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
30 ms |
448 KB |
Correct. |
2 |
Correct |
27 ms |
492 KB |
Correct. |
3 |
Correct |
50 ms |
8700 KB |
Correct. |
4 |
Correct |
18 ms |
1172 KB |
Correct. |
5 |
Correct |
30 ms |
388 KB |
Correct. |
6 |
Correct |
29 ms |
468 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
86 ms |
444 KB |
Correct. |
2 |
Correct |
13 ms |
468 KB |
Correct. |
3 |
Correct |
263 ms |
11192 KB |
Correct. |
4 |
Correct |
193 ms |
2668 KB |
Correct. |
5 |
Correct |
329 ms |
8416 KB |
Correct. |
6 |
Correct |
121 ms |
5432 KB |
Correct. |
7 |
Correct |
179 ms |
2948 KB |
Correct. |
8 |
Correct |
164 ms |
716 KB |
Correct. |
9 |
Correct |
72 ms |
436 KB |
Correct. |
10 |
Correct |
73 ms |
600 KB |
Correct. |
11 |
Correct |
156 ms |
588 KB |
Correct. |
12 |
Correct |
79 ms |
436 KB |
Correct. |
13 |
Correct |
80 ms |
508 KB |
Correct. |
14 |
Correct |
158 ms |
5680 KB |
Correct. |
15 |
Correct |
163 ms |
1700 KB |
Correct. |
16 |
Correct |
80 ms |
412 KB |
Correct. |
17 |
Correct |
89 ms |
472 KB |
Correct. |
18 |
Correct |
86 ms |
480 KB |
Correct. |
19 |
Correct |
226 ms |
432 KB |
Correct. |
20 |
Correct |
6 ms |
352 KB |
Correct. |
21 |
Correct |
7 ms |
340 KB |
Correct. |
22 |
Correct |
9 ms |
852 KB |
Correct. |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
142 ms |
488 KB |
Correct. |
2 |
Correct |
21 ms |
468 KB |
Correct. |
3 |
Correct |
168 ms |
10936 KB |
Correct. |
4 |
Correct |
191 ms |
988 KB |
Correct. |
5 |
Correct |
606 ms |
8420 KB |
Correct. |
6 |
Correct |
223 ms |
5532 KB |
Correct. |
7 |
Correct |
224 ms |
4608 KB |
Correct. |
8 |
Correct |
187 ms |
732 KB |
Correct. |
9 |
Correct |
124 ms |
432 KB |
Correct. |
10 |
Correct |
132 ms |
464 KB |
Correct. |
11 |
Correct |
268 ms |
564 KB |
Correct. |
12 |
Correct |
135 ms |
500 KB |
Correct. |
13 |
Correct |
135 ms |
420 KB |
Correct. |
14 |
Correct |
395 ms |
6528 KB |
Correct. |
15 |
Correct |
499 ms |
5864 KB |
Correct. |
16 |
Correct |
284 ms |
2316 KB |
Correct. |
17 |
Correct |
201 ms |
792 KB |
Correct. |
18 |
Correct |
127 ms |
448 KB |
Correct. |
19 |
Correct |
153 ms |
508 KB |
Correct. |
20 |
Correct |
147 ms |
564 KB |
Correct. |
21 |
Correct |
394 ms |
340 KB |
Correct. |
22 |
Correct |
8 ms |
340 KB |
Correct. |
23 |
Correct |
11 ms |
400 KB |
Correct. |
24 |
Correct |
16 ms |
852 KB |
Correct. |