// Om Namah Shivaya
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a, b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a, b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
*/
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
vector<ll> adj[N];
struct lca_algo {
// LCA template (for graphs with 1-based indexing)
int LOG = 1;
vector<int> depth;
vector<vector<int>> up;
lca_algo() {
}
lca_algo(int n) {
lca_init(n);
}
void lca_init(int n) {
while ((1 << LOG) < n) LOG++;
up = vector<vector<int>>(n + 1, vector<int>(LOG, 1));
depth = vector<int>(n + 1);
lca_dfs(1, -1);
}
void lca_dfs(int node, int par) {
trav(child, adj[node]) {
if (child == par) conts;
up[child][0] = node;
rep1(j, LOG - 1) {
up[child][j] = up[up[child][j - 1]][j - 1];
}
depth[child] = depth[node] + 1;
lca_dfs(child, node);
}
}
int lift(int u, int k) {
rep(j, LOG) {
if (k & (1 << j)) {
u = up[u][j];
}
}
return u;
}
int query(int u, int v) {
if (depth[u] < depth[v]) swap(u, v);
int k = depth[u] - depth[v];
u = lift(u, k);
if (u == v) return u;
rev(j, LOG - 1, 0) {
if (up[u][j] != up[v][j]) {
u = up[u][j];
v = up[v][j];
}
}
u = up[u][0];
return u;
}
int get_dis(int u, int v) {
int lca = query(u, v);
return depth[u] + depth[v] - 2 * depth[lca];
}
};
template<typename T>
struct fenwick {
int siz;
vector<T> tree;
fenwick(int n) {
siz = n;
tree = vector<T>(n + 1);
}
int lsb(int x) {
return x & -x;
}
void build(vector<T> &a, int n) {
for (int i = 1; i <= n; ++i) {
int par = i + lsb(i);
tree[i] += a[i];
if (par <= siz) {
tree[par] += tree[i];
}
}
}
void pupd(int i, T v) {
while (i <= siz) {
tree[i] += v;
i += lsb(i);
}
}
T sum(int i) {
T res = 0;
while (i) {
res += tree[i];
i -= lsb(i);
}
return res;
}
T query(int l, int r) {
if (l > r) return 0;
T res = sum(r) - sum(l - 1);
return res;
}
};
vector<array<ll,3>> here[N];
vector<ll> dp(N), adj_dp(N);
vector<ll> tin(N), tout(N);
vector<ll> par(N,-1);
ll timer = 1;
ll n;
void dfs1(ll u, ll p){
tin[u] = timer++;
trav(v, adj[u]){
if(v == p) conts;
par[v] = u;
dfs1(v, u);
}
tout[u] = timer++;
}
fenwick<ll> fenw(2*N);
void dfs2(ll u, ll p){
trav(v, adj[u]){
if(v == p) conts;
dfs2(v, u);
adj_dp[u] += dp[v];
}
// dont pick any path going through u
amax(dp[u], adj_dp[u]);
// pick 1 path passing through u
for(auto [x, y, w] : here[u]){
ll val = w + fenw.query(1,tin[x]) + fenw.query(1,tin[y]) + adj_dp[u];
amax(dp[u], val);
/*
ll x2 = x;
while(x2 != u){
val -= dp[x2];
val += adj_dp[x2];
x2 = par[x2];
}
ll y2 = y;
while(y2 != u){
val -= dp[y2];
val += adj_dp[y2];
y2 = par[y2];
}
val += adj_dp[u];
amax(dp[u], val);
*/
}
fenw.pupd(tin[u], -dp[u] + adj_dp[u]);
fenw.pupd(tout[u], dp[u] - adj_dp[u]);
}
void solve(int test_case)
{
cin >> n;
rep1(i,n-1){
ll u,v; cin >> u >> v;
adj[u].pb(v), adj[v].pb(u);
}
lca_algo LCA(n);
ll m; cin >> m;
rep1(i,m){
ll u,v,w; cin >> u >> v >> w;
ll lca = LCA.query(u,v);
here[lca].pb({u, v, w});
}
dfs1(1, -1);
dfs2(1, -1);
ll ans = dp[1];
cout << ans << endl;
}
int main()
{
fastio;
int t = 1;
// cin >> t;
rep1(i, t) {
solve(i);
}
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
10452 KB |
Output is correct |
2 |
Correct |
6 ms |
10452 KB |
Output is correct |
3 |
Correct |
7 ms |
10452 KB |
Output is correct |
4 |
Correct |
6 ms |
10580 KB |
Output is correct |
5 |
Correct |
109 ms |
25016 KB |
Output is correct |
6 |
Correct |
53 ms |
30412 KB |
Output is correct |
7 |
Correct |
114 ms |
28616 KB |
Output is correct |
8 |
Correct |
82 ms |
25120 KB |
Output is correct |
9 |
Correct |
111 ms |
27372 KB |
Output is correct |
10 |
Correct |
82 ms |
25036 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
10476 KB |
Output is correct |
2 |
Correct |
5 ms |
10452 KB |
Output is correct |
3 |
Correct |
8 ms |
10688 KB |
Output is correct |
4 |
Correct |
119 ms |
33984 KB |
Output is correct |
5 |
Correct |
123 ms |
36480 KB |
Output is correct |
6 |
Correct |
115 ms |
36532 KB |
Output is correct |
7 |
Correct |
122 ms |
36428 KB |
Output is correct |
8 |
Correct |
121 ms |
36368 KB |
Output is correct |
9 |
Correct |
118 ms |
36388 KB |
Output is correct |
10 |
Correct |
121 ms |
36424 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
10476 KB |
Output is correct |
2 |
Correct |
5 ms |
10452 KB |
Output is correct |
3 |
Correct |
8 ms |
10688 KB |
Output is correct |
4 |
Correct |
119 ms |
33984 KB |
Output is correct |
5 |
Correct |
123 ms |
36480 KB |
Output is correct |
6 |
Correct |
115 ms |
36532 KB |
Output is correct |
7 |
Correct |
122 ms |
36428 KB |
Output is correct |
8 |
Correct |
121 ms |
36368 KB |
Output is correct |
9 |
Correct |
118 ms |
36388 KB |
Output is correct |
10 |
Correct |
121 ms |
36424 KB |
Output is correct |
11 |
Correct |
13 ms |
11860 KB |
Output is correct |
12 |
Correct |
127 ms |
36680 KB |
Output is correct |
13 |
Correct |
122 ms |
36736 KB |
Output is correct |
14 |
Correct |
113 ms |
36688 KB |
Output is correct |
15 |
Correct |
123 ms |
36744 KB |
Output is correct |
16 |
Correct |
113 ms |
36768 KB |
Output is correct |
17 |
Correct |
135 ms |
36648 KB |
Output is correct |
18 |
Correct |
125 ms |
36680 KB |
Output is correct |
19 |
Correct |
114 ms |
36712 KB |
Output is correct |
20 |
Correct |
131 ms |
36908 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
179 ms |
28020 KB |
Output is correct |
2 |
Correct |
117 ms |
33984 KB |
Output is correct |
3 |
Correct |
288 ms |
31936 KB |
Output is correct |
4 |
Correct |
118 ms |
30792 KB |
Output is correct |
5 |
Correct |
229 ms |
33788 KB |
Output is correct |
6 |
Correct |
120 ms |
30764 KB |
Output is correct |
7 |
Correct |
259 ms |
33476 KB |
Output is correct |
8 |
Correct |
200 ms |
30472 KB |
Output is correct |
9 |
Correct |
121 ms |
36448 KB |
Output is correct |
10 |
Correct |
254 ms |
32632 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
10452 KB |
Output is correct |
2 |
Correct |
6 ms |
10452 KB |
Output is correct |
3 |
Correct |
7 ms |
10452 KB |
Output is correct |
4 |
Correct |
6 ms |
10580 KB |
Output is correct |
5 |
Correct |
109 ms |
25016 KB |
Output is correct |
6 |
Correct |
53 ms |
30412 KB |
Output is correct |
7 |
Correct |
114 ms |
28616 KB |
Output is correct |
8 |
Correct |
82 ms |
25120 KB |
Output is correct |
9 |
Correct |
111 ms |
27372 KB |
Output is correct |
10 |
Correct |
82 ms |
25036 KB |
Output is correct |
11 |
Correct |
6 ms |
10612 KB |
Output is correct |
12 |
Correct |
6 ms |
10708 KB |
Output is correct |
13 |
Correct |
6 ms |
10580 KB |
Output is correct |
14 |
Correct |
6 ms |
10580 KB |
Output is correct |
15 |
Correct |
7 ms |
10652 KB |
Output is correct |
16 |
Correct |
6 ms |
10580 KB |
Output is correct |
17 |
Correct |
6 ms |
10672 KB |
Output is correct |
18 |
Correct |
6 ms |
10580 KB |
Output is correct |
19 |
Correct |
6 ms |
10668 KB |
Output is correct |
20 |
Correct |
6 ms |
10708 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
5 ms |
10452 KB |
Output is correct |
2 |
Correct |
6 ms |
10452 KB |
Output is correct |
3 |
Correct |
7 ms |
10452 KB |
Output is correct |
4 |
Correct |
6 ms |
10580 KB |
Output is correct |
5 |
Correct |
109 ms |
25016 KB |
Output is correct |
6 |
Correct |
53 ms |
30412 KB |
Output is correct |
7 |
Correct |
114 ms |
28616 KB |
Output is correct |
8 |
Correct |
82 ms |
25120 KB |
Output is correct |
9 |
Correct |
111 ms |
27372 KB |
Output is correct |
10 |
Correct |
82 ms |
25036 KB |
Output is correct |
11 |
Correct |
5 ms |
10476 KB |
Output is correct |
12 |
Correct |
5 ms |
10452 KB |
Output is correct |
13 |
Correct |
8 ms |
10688 KB |
Output is correct |
14 |
Correct |
119 ms |
33984 KB |
Output is correct |
15 |
Correct |
123 ms |
36480 KB |
Output is correct |
16 |
Correct |
115 ms |
36532 KB |
Output is correct |
17 |
Correct |
122 ms |
36428 KB |
Output is correct |
18 |
Correct |
121 ms |
36368 KB |
Output is correct |
19 |
Correct |
118 ms |
36388 KB |
Output is correct |
20 |
Correct |
121 ms |
36424 KB |
Output is correct |
21 |
Correct |
13 ms |
11860 KB |
Output is correct |
22 |
Correct |
127 ms |
36680 KB |
Output is correct |
23 |
Correct |
122 ms |
36736 KB |
Output is correct |
24 |
Correct |
113 ms |
36688 KB |
Output is correct |
25 |
Correct |
123 ms |
36744 KB |
Output is correct |
26 |
Correct |
113 ms |
36768 KB |
Output is correct |
27 |
Correct |
135 ms |
36648 KB |
Output is correct |
28 |
Correct |
125 ms |
36680 KB |
Output is correct |
29 |
Correct |
114 ms |
36712 KB |
Output is correct |
30 |
Correct |
131 ms |
36908 KB |
Output is correct |
31 |
Correct |
179 ms |
28020 KB |
Output is correct |
32 |
Correct |
117 ms |
33984 KB |
Output is correct |
33 |
Correct |
288 ms |
31936 KB |
Output is correct |
34 |
Correct |
118 ms |
30792 KB |
Output is correct |
35 |
Correct |
229 ms |
33788 KB |
Output is correct |
36 |
Correct |
120 ms |
30764 KB |
Output is correct |
37 |
Correct |
259 ms |
33476 KB |
Output is correct |
38 |
Correct |
200 ms |
30472 KB |
Output is correct |
39 |
Correct |
121 ms |
36448 KB |
Output is correct |
40 |
Correct |
254 ms |
32632 KB |
Output is correct |
41 |
Correct |
6 ms |
10612 KB |
Output is correct |
42 |
Correct |
6 ms |
10708 KB |
Output is correct |
43 |
Correct |
6 ms |
10580 KB |
Output is correct |
44 |
Correct |
6 ms |
10580 KB |
Output is correct |
45 |
Correct |
7 ms |
10652 KB |
Output is correct |
46 |
Correct |
6 ms |
10580 KB |
Output is correct |
47 |
Correct |
6 ms |
10672 KB |
Output is correct |
48 |
Correct |
6 ms |
10580 KB |
Output is correct |
49 |
Correct |
6 ms |
10668 KB |
Output is correct |
50 |
Correct |
6 ms |
10708 KB |
Output is correct |
51 |
Correct |
185 ms |
30660 KB |
Output is correct |
52 |
Correct |
134 ms |
36680 KB |
Output is correct |
53 |
Correct |
287 ms |
32972 KB |
Output is correct |
54 |
Correct |
133 ms |
30912 KB |
Output is correct |
55 |
Correct |
182 ms |
30632 KB |
Output is correct |
56 |
Correct |
140 ms |
36744 KB |
Output is correct |
57 |
Correct |
213 ms |
33744 KB |
Output is correct |
58 |
Correct |
130 ms |
30788 KB |
Output is correct |
59 |
Correct |
192 ms |
30624 KB |
Output is correct |
60 |
Correct |
136 ms |
36688 KB |
Output is correct |
61 |
Correct |
214 ms |
33844 KB |
Output is correct |
62 |
Correct |
128 ms |
31064 KB |
Output is correct |
63 |
Correct |
175 ms |
30660 KB |
Output is correct |
64 |
Correct |
142 ms |
36652 KB |
Output is correct |
65 |
Correct |
288 ms |
33628 KB |
Output is correct |
66 |
Correct |
122 ms |
30720 KB |
Output is correct |
67 |
Correct |
173 ms |
31228 KB |
Output is correct |
68 |
Correct |
127 ms |
36624 KB |
Output is correct |
69 |
Correct |
199 ms |
32832 KB |
Output is correct |
70 |
Correct |
127 ms |
31008 KB |
Output is correct |