// Om Namah Shivaya
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a, b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a, b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
refs:
https://codeforces.com/blog/entry/68269?#comment-527139
edi
choose l <= a < b < c <= r s.t:
b-a <= c-b
arr[a]+arr[b]+arr[c] is max
let's say we fix (a,b)
when can we consider (a,b) as an option
if there is a guy in between with a higher val, then we dont have to consider pair (a,b)
if there exists k s.t a < k < b with arr[k] >= arr[a] or arr[k] >= arr[b], then we can do this:
arr[k] >= arr[a]: set a = k
arr[k] >= arr[b]: set b = k
by doing this, we reduce the jump distance from a to b
so we have more options for c
in short, consider pair (a,b) only if there is nobody in between with a higher or equal value
how many such pairs are there?
iterate over b from 1 to n and find all valid a
maintain all valid a values when increasing b
once some a becomes bad (some >= guy appears in between), he never becomes good for bigger b
we want to find all a for whom nobody >= them has appeared in [a,b] so far
indices of active set = i1 < i2 < ... < ik
values of active set = arr[i1] > arr[i2] > ... > arr[ik]
(active set is like montonic stack)
what happens to the active set and the good pairs when we move from b-1 to b?
for all guys in the active set with arr[a] <= arr[b], (a,b) is a good pair
but because arr[a] <= arr[b], a can no longer belong to a good pair for bigger values of b
so a is removed from the active set
what about values of a for which arr[a] > arr[b]?
we have removed all values of a for which arr[a] <= arr[b] from the active set
so all guys in the active set have arr[a] > arr[b]
lets look at the largest a (last guy of the active set with the smallest arr[a] val)
he will obviously form a good pair (a,b)
lets look at the 2nd largest a (prev last guy of the active set)
the 2nd largest a does not form a good pair because a comes in between and arr[a] > arr[b] (violates one of our conditions)
same goes for 3rd largest, 4th largest etc
so the only good pair a will be the largest a (or no good pair if active set is empty)
how many good pairs do we have?
+1 every time we pop a guy from active set
+1 for arr[a] > arr[b]
so the #of good pairs is bounded by 2n = O(n)
so we have O(n) good pairs to consider for each query
how to ans queries
we can answer queries offline using sweepline
sweep by decreasing l value
when we are at a given l val, consider all pairs with a = l
for this pair, c must be >= b+(b-a)
for a given value of c >= 2b-a, if we use pair (a,b), we get value (arr[a] + arr[b]) + arr[c]
in a segtree, we put the value arr[a] + arr[b] at pos 2b-a
we do this for all pairs
then if we pick c, max val = arr[c] + max(arr[a] + arr[b]) on pref
this can be computed quickly with segtree
*/
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
template<typename T>
struct segtree {
// https://codeforces.com/blog/entry/18051
/*=======================================================*/
struct data {
ll mx1, mx2, res;
};
data neutral = {-inf2, -inf2, -inf2};
data merge(data &left, data &right) {
data curr;
curr.mx1 = max(left.mx1,right.mx1);
curr.mx2 = max(left.mx2,right.mx2);
curr.res = max({left.res, right.res, left.mx2 + right.mx1});
return curr;
}
void create(int i, T v) {
tr[i].mx1 = v;
}
void modify(int i, T v) {
amax(tr[i].mx2, v);
tr[i].res = tr[i].mx1 + tr[i].mx2;
}
/*=======================================================*/
int n;
vector<data> tr;
segtree() {
}
segtree(int siz) {
init(siz);
}
void init(int siz) {
n = siz;
tr.assign(2 * n, neutral);
}
void build(vector<T> &a, int siz) {
rep(i, siz) create(i + n, a[i]);
rev(i, n - 1, 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
}
void pupd(int i, T v) {
modify(i + n, v);
for (i = (i + n) >> 1; i; i >>= 1) tr[i] = merge(tr[i << 1], tr[i << 1 | 1]);
}
data query(int l, int r) {
data resl = neutral, resr = neutral;
for (l += n, r += n; l <= r; l >>= 1, r >>= 1) {
if (l & 1) resl = merge(resl, tr[l++]);
if (!(r & 1)) resr = merge(tr[r--], resr);
}
return merge(resl, resr);
}
};
void solve(int test_case)
{
ll n; cin >> n;
vector<ll> arr(n+5);
rep1(i,n) cin >> arr[i];
vector<ll> good;
vector<pll> pairs;
rep1(b,n){
while(!good.empty() and arr[b] >= arr[good.back()]){
pairs.pb({good.back(), b});
good.pop_back();
}
if(!good.empty()){
pairs.pb({good.back(), b});
}
good.pb(b);
}
vector<ll> enter[n+5];
for(auto [a,b] : pairs){
enter[a].pb(b);
}
ll q; cin >> q;
vector<pll> queries[n+5];
rep1(i,q){
ll l,r; cin >> l >> r;
queries[l].pb({r, i});
}
vector<ll> ans(q+5);
segtree<ll> st(n+5);
st.build(arr,n+1);
rev(l,n,1){
trav(b,enter[l]){
ll dis = b - l;
ll c = b + dis;
if(c <= n){
st.pupd(c, arr[l] + arr[b]);
}
}
for(auto [r, id] : queries[l]){
ans[id] = st.query(l,r).res;
}
}
rep1(i,q) cout << ans[i] << endl;
}
int main()
{
fastio;
int t = 1;
// cin >> t;
rep1(i, t) {
solve(i);
}
return 0;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
212 KB |
Output is correct |
2 |
Correct |
1 ms |
320 KB |
Output is correct |
3 |
Correct |
1 ms |
212 KB |
Output is correct |
4 |
Correct |
1 ms |
340 KB |
Output is correct |
5 |
Correct |
0 ms |
316 KB |
Output is correct |
6 |
Correct |
1 ms |
340 KB |
Output is correct |
7 |
Correct |
1 ms |
324 KB |
Output is correct |
8 |
Correct |
0 ms |
340 KB |
Output is correct |
9 |
Correct |
0 ms |
340 KB |
Output is correct |
10 |
Correct |
1 ms |
320 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
212 KB |
Output is correct |
2 |
Correct |
1 ms |
320 KB |
Output is correct |
3 |
Correct |
1 ms |
212 KB |
Output is correct |
4 |
Correct |
1 ms |
340 KB |
Output is correct |
5 |
Correct |
0 ms |
316 KB |
Output is correct |
6 |
Correct |
1 ms |
340 KB |
Output is correct |
7 |
Correct |
1 ms |
324 KB |
Output is correct |
8 |
Correct |
0 ms |
340 KB |
Output is correct |
9 |
Correct |
0 ms |
340 KB |
Output is correct |
10 |
Correct |
1 ms |
320 KB |
Output is correct |
11 |
Correct |
242 ms |
23952 KB |
Output is correct |
12 |
Correct |
166 ms |
23752 KB |
Output is correct |
13 |
Correct |
177 ms |
23952 KB |
Output is correct |
14 |
Correct |
183 ms |
23940 KB |
Output is correct |
15 |
Correct |
175 ms |
24144 KB |
Output is correct |
16 |
Correct |
205 ms |
23384 KB |
Output is correct |
17 |
Correct |
230 ms |
23380 KB |
Output is correct |
18 |
Correct |
178 ms |
23196 KB |
Output is correct |
19 |
Correct |
190 ms |
23876 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
99 ms |
35056 KB |
Output is correct |
2 |
Correct |
76 ms |
30604 KB |
Output is correct |
3 |
Correct |
68 ms |
32292 KB |
Output is correct |
4 |
Correct |
138 ms |
35064 KB |
Output is correct |
5 |
Correct |
114 ms |
35044 KB |
Output is correct |
6 |
Correct |
97 ms |
35064 KB |
Output is correct |
7 |
Correct |
104 ms |
35040 KB |
Output is correct |
8 |
Correct |
100 ms |
35188 KB |
Output is correct |
9 |
Correct |
99 ms |
35072 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
212 KB |
Output is correct |
2 |
Correct |
1 ms |
320 KB |
Output is correct |
3 |
Correct |
1 ms |
212 KB |
Output is correct |
4 |
Correct |
1 ms |
340 KB |
Output is correct |
5 |
Correct |
0 ms |
316 KB |
Output is correct |
6 |
Correct |
1 ms |
340 KB |
Output is correct |
7 |
Correct |
1 ms |
324 KB |
Output is correct |
8 |
Correct |
0 ms |
340 KB |
Output is correct |
9 |
Correct |
0 ms |
340 KB |
Output is correct |
10 |
Correct |
1 ms |
320 KB |
Output is correct |
11 |
Correct |
242 ms |
23952 KB |
Output is correct |
12 |
Correct |
166 ms |
23752 KB |
Output is correct |
13 |
Correct |
177 ms |
23952 KB |
Output is correct |
14 |
Correct |
183 ms |
23940 KB |
Output is correct |
15 |
Correct |
175 ms |
24144 KB |
Output is correct |
16 |
Correct |
205 ms |
23384 KB |
Output is correct |
17 |
Correct |
230 ms |
23380 KB |
Output is correct |
18 |
Correct |
178 ms |
23196 KB |
Output is correct |
19 |
Correct |
190 ms |
23876 KB |
Output is correct |
20 |
Correct |
99 ms |
35056 KB |
Output is correct |
21 |
Correct |
76 ms |
30604 KB |
Output is correct |
22 |
Correct |
68 ms |
32292 KB |
Output is correct |
23 |
Correct |
138 ms |
35064 KB |
Output is correct |
24 |
Correct |
114 ms |
35044 KB |
Output is correct |
25 |
Correct |
97 ms |
35064 KB |
Output is correct |
26 |
Correct |
104 ms |
35040 KB |
Output is correct |
27 |
Correct |
100 ms |
35188 KB |
Output is correct |
28 |
Correct |
99 ms |
35072 KB |
Output is correct |
29 |
Correct |
606 ms |
107968 KB |
Output is correct |
30 |
Correct |
563 ms |
96964 KB |
Output is correct |
31 |
Correct |
604 ms |
100884 KB |
Output is correct |
32 |
Correct |
608 ms |
107960 KB |
Output is correct |
33 |
Correct |
670 ms |
107964 KB |
Output is correct |
34 |
Correct |
573 ms |
107336 KB |
Output is correct |
35 |
Correct |
639 ms |
107204 KB |
Output is correct |
36 |
Correct |
629 ms |
107276 KB |
Output is correct |
37 |
Correct |
642 ms |
107920 KB |
Output is correct |
38 |
Correct |
408 ms |
110656 KB |
Output is correct |
39 |
Correct |
408 ms |
110648 KB |
Output is correct |
40 |
Correct |
415 ms |
108932 KB |
Output is correct |
41 |
Correct |
392 ms |
108572 KB |
Output is correct |
42 |
Correct |
424 ms |
108632 KB |
Output is correct |
43 |
Correct |
412 ms |
109536 KB |
Output is correct |
44 |
Correct |
454 ms |
110816 KB |
Output is correct |
45 |
Correct |
424 ms |
110884 KB |
Output is correct |
46 |
Correct |
443 ms |
109244 KB |
Output is correct |
47 |
Correct |
410 ms |
109072 KB |
Output is correct |
48 |
Correct |
431 ms |
109160 KB |
Output is correct |
49 |
Correct |
448 ms |
110320 KB |
Output is correct |
50 |
Correct |
497 ms |
111012 KB |
Output is correct |
51 |
Correct |
491 ms |
111028 KB |
Output is correct |
52 |
Correct |
489 ms |
110120 KB |
Output is correct |
53 |
Correct |
487 ms |
110124 KB |
Output is correct |
54 |
Correct |
488 ms |
110060 KB |
Output is correct |
55 |
Correct |
463 ms |
110876 KB |
Output is correct |