Submission #737589

# Submission time Handle Problem Language Result Execution time Memory
737589 2023-05-07T11:57:52 Z GrindMachine Bubble Sort 2 (JOI18_bubblesort2) C++17
100 / 100
3736 ms 43704 KB
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi: http://s3-ap-northeast-1.amazonaws.com/data.cms.ioi-jp.org/open-2018/2018-open-bubblesort2-sol-en.pdf
https://codeforces.com/blog/entry/61340?#comment-452982
(read edi of linked usaco problem, it contains the proof for the approach mentioned in the joi edi)

let's rewrite every index of a as (ai,i)
so that all guys are unique

let bi = final pos of guy i in sorted a[]

key obs:
in one pass of bubblesort, a guy may move how many ever places to the right
but it can move at most 1 place to the left

so for every guy, lower bound on #of ops = i-b[i]

how to find ans using the lower bounds?
in fact, ans = max(all lower bounds)
i.e ans = max(i-b[i]) for all i

for a guy with positive i-b[i], he either moves left (i-b[i] is positive cuz someone bigger than a[i] is there to the left, so when this bigger guy moves to the right, this guy would move one step to the left)
for a guy with i-b[i] = 0, he never moves right (may move left tho)

so max(i-b[i]) dec by 1 in every op until it becomes 0
proof complete

queries can be handled efficiently using lazysegtree + fenwick tree

*/

#include "bubblesort2.h"

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct fenwick {
    int siz;
    vector<T> tree;

    fenwick(int n) {
        siz = n;
        tree = vector<T>(n + 1);
    }

    int lsb(int x) {
        return x & -x;
    }

    void build(vector<T> &a, int n) {
        for (int i = 1; i <= n; ++i) {
            int par = i + lsb(i);
            tree[i] += a[i];

            if (par <= siz) {
                tree[par] += tree[i];
            }
        }
    }

    void pupd(int i, T v) {
        i++;

        while (i <= siz) {
            tree[i] += v;
            i += lsb(i);
        }
    }

    T sum(int i) {
        i++;

        T res = 0;

        while (i) {
            res += tree[i];
            i -= lsb(i);
        }

        return res;
    }

    T query(int l, int r) {
        if (l > r) return 0;
        T res = sum(r) - sum(l - 1);
        return res;
    }
};

template<typename T>
struct lazysegtree {
    /*=======================================================*/

    struct data {
        int a;
    };

    struct lazy {
        int a;
    };

    data d_neutral = { -inf1};
    lazy l_neutral = {0};

    void merge(data &curr, data &left, data &right) {
        curr.a = max(left.a, right.a);
    }

    void create(int x, int lx, int rx, T v) {
        tr[x].a = v;
    }

    void modify(int x, int lx, int rx, T v) {
        if (v.ff == 1) {
            // set
            tr[x].a = v.ss;
        }
        else {
            // add
            lz[x].a = v.ss;
        }
    }

    void propagate(int x, int lx, int rx) {
        ll v = lz[x].a;
        if (!v) return;

        tr[x].a += v;

        if (rx - lx > 1) {
            lz[2 * x + 1].a += v;
            lz[2 * x + 2].a += v;
        }

        lz[x] = l_neutral;
    }

    /*=======================================================*/

    int siz = 1;
    vector<data> tr;
    vector<lazy> lz;

    lazysegtree() {

    }

    lazysegtree(int n) {
        while (siz < n) siz *= 2;
        tr.assign(2 * siz, d_neutral);
        lz.assign(2 * siz, l_neutral);
    }

    void build(vector<T> &a, int n, int x, int lx, int rx) {
        if (rx - lx == 1) {
            if (lx < n) {
                create(x, lx, rx, a[lx]);
            }

            return;
        }

        int mid = (lx + rx) / 2;

        build(a, n, 2 * x + 1, lx, mid);
        build(a, n, 2 * x + 2, mid, rx);

        merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]);
    }

    void build(vector<T> &a, int n) {
        build(a, n, 0, 0, siz);
    }

    void rupd(int l, int r, T v, int x, int lx, int rx) {
        propagate(x, lx, rx);

        if (lx >= r or rx <= l) return;
        if (lx >= l and rx <= r) {
            modify(x, lx, rx, v);
            propagate(x, lx, rx);
            return;
        }

        int mid = (lx + rx) / 2;

        rupd(l, r, v, 2 * x + 1, lx, mid);
        rupd(l, r, v, 2 * x + 2, mid, rx);

        merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]);
    }

    void rupd(int l, int r, T v) {
        rupd(l, r + 1, v, 0, 0, siz);
    }

    data query(int l, int r, int x, int lx, int rx) {
        propagate(x, lx, rx);

        if (lx >= r or rx <= l) return d_neutral;
        if (lx >= l and rx <= r) return tr[x];

        int mid = (lx + rx) / 2;

        data curr;
        data left = query(l, r, 2 * x + 1, lx, mid);
        data right = query(l, r, 2 * x + 2, mid, rx);

        merge(curr, left, right);
        return curr;
    }

    data query(int l, int r) {
        return query(l, r + 1, 0, 0, siz);
    }
};

vector<int> countScans(vector<int> a, vector<int> qx, vector<int> qv) {
    int n = sz(a);
    int q = sz(qx);

    vector<pii> b;
    rep(i, n) {
        b.pb({a[i], i});
    }
    rep(i, q) {
        b.pb({qv[i], qx[i]});
    }

    sort(all(b));
    b.resize(unique(all(b)) - b.begin());
    int siz = sz(b);

    auto get_ind = [&](pii p) {
        return lower_bound(all(b), p) - b.begin();
    };

    lazysegtree<pii> st(siz + 5);
    fenwick<int> fenw(siz + 5);

    rep(i, n) {
        int ind = get_ind({a[i], i});
        st.rupd(ind, ind, {1, i});
        fenw.pupd(ind, 1);
    }

    rep(i, n) {
        int ind = get_ind({a[i], i});
        st.rupd(ind + 1, siz, {2, -1});
    }

    vector<int> ans(q);

    rep(id, q) {
        int i = qx[id];
        int v = qv[id];

        int ind1 = get_ind({a[i], i});
        st.rupd(ind1, ind1, {1, -inf1});
        st.rupd(ind1, siz, {2, 1});
        fenw.pupd(ind1, -1);

        a[i] = v;

        int ind2 = get_ind({a[i], i});
        int smaller = fenw.query(0, ind2 - 1);
        st.rupd(ind2, ind2, {1, i - smaller});
        st.rupd(ind2 + 1, siz, {2, -1});
        fenw.pupd(ind2, 1);

        ans[id] = st.query(0, siz).a;
    }

    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 340 KB Output is correct
2 Correct 3 ms 340 KB Output is correct
3 Correct 7 ms 440 KB Output is correct
4 Correct 7 ms 440 KB Output is correct
5 Correct 7 ms 468 KB Output is correct
6 Correct 6 ms 520 KB Output is correct
7 Correct 7 ms 516 KB Output is correct
8 Correct 6 ms 468 KB Output is correct
9 Correct 6 ms 440 KB Output is correct
10 Correct 6 ms 440 KB Output is correct
11 Correct 6 ms 436 KB Output is correct
12 Correct 6 ms 468 KB Output is correct
13 Correct 6 ms 568 KB Output is correct
14 Correct 6 ms 468 KB Output is correct
15 Correct 6 ms 512 KB Output is correct
16 Correct 6 ms 472 KB Output is correct
17 Correct 6 ms 512 KB Output is correct
18 Correct 6 ms 440 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 340 KB Output is correct
2 Correct 3 ms 340 KB Output is correct
3 Correct 7 ms 440 KB Output is correct
4 Correct 7 ms 440 KB Output is correct
5 Correct 7 ms 468 KB Output is correct
6 Correct 6 ms 520 KB Output is correct
7 Correct 7 ms 516 KB Output is correct
8 Correct 6 ms 468 KB Output is correct
9 Correct 6 ms 440 KB Output is correct
10 Correct 6 ms 440 KB Output is correct
11 Correct 6 ms 436 KB Output is correct
12 Correct 6 ms 468 KB Output is correct
13 Correct 6 ms 568 KB Output is correct
14 Correct 6 ms 468 KB Output is correct
15 Correct 6 ms 512 KB Output is correct
16 Correct 6 ms 472 KB Output is correct
17 Correct 6 ms 512 KB Output is correct
18 Correct 6 ms 440 KB Output is correct
19 Correct 21 ms 980 KB Output is correct
20 Correct 28 ms 1064 KB Output is correct
21 Correct 25 ms 1028 KB Output is correct
22 Correct 26 ms 1076 KB Output is correct
23 Correct 25 ms 1100 KB Output is correct
24 Correct 25 ms 980 KB Output is correct
25 Correct 30 ms 1080 KB Output is correct
26 Correct 27 ms 980 KB Output is correct
27 Correct 23 ms 1072 KB Output is correct
28 Correct 24 ms 1080 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 36 ms 1512 KB Output is correct
2 Correct 110 ms 2900 KB Output is correct
3 Correct 195 ms 5088 KB Output is correct
4 Correct 202 ms 5032 KB Output is correct
5 Correct 195 ms 5016 KB Output is correct
6 Correct 196 ms 4928 KB Output is correct
7 Correct 201 ms 5020 KB Output is correct
8 Correct 189 ms 5020 KB Output is correct
9 Correct 180 ms 5020 KB Output is correct
10 Correct 157 ms 3748 KB Output is correct
11 Correct 160 ms 3752 KB Output is correct
12 Correct 160 ms 3752 KB Output is correct
13 Correct 176 ms 3804 KB Output is correct
14 Correct 158 ms 3748 KB Output is correct
15 Correct 159 ms 3720 KB Output is correct
16 Correct 150 ms 3700 KB Output is correct
17 Correct 150 ms 3756 KB Output is correct
18 Correct 142 ms 3780 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 340 KB Output is correct
2 Correct 3 ms 340 KB Output is correct
3 Correct 7 ms 440 KB Output is correct
4 Correct 7 ms 440 KB Output is correct
5 Correct 7 ms 468 KB Output is correct
6 Correct 6 ms 520 KB Output is correct
7 Correct 7 ms 516 KB Output is correct
8 Correct 6 ms 468 KB Output is correct
9 Correct 6 ms 440 KB Output is correct
10 Correct 6 ms 440 KB Output is correct
11 Correct 6 ms 436 KB Output is correct
12 Correct 6 ms 468 KB Output is correct
13 Correct 6 ms 568 KB Output is correct
14 Correct 6 ms 468 KB Output is correct
15 Correct 6 ms 512 KB Output is correct
16 Correct 6 ms 472 KB Output is correct
17 Correct 6 ms 512 KB Output is correct
18 Correct 6 ms 440 KB Output is correct
19 Correct 21 ms 980 KB Output is correct
20 Correct 28 ms 1064 KB Output is correct
21 Correct 25 ms 1028 KB Output is correct
22 Correct 26 ms 1076 KB Output is correct
23 Correct 25 ms 1100 KB Output is correct
24 Correct 25 ms 980 KB Output is correct
25 Correct 30 ms 1080 KB Output is correct
26 Correct 27 ms 980 KB Output is correct
27 Correct 23 ms 1072 KB Output is correct
28 Correct 24 ms 1080 KB Output is correct
29 Correct 36 ms 1512 KB Output is correct
30 Correct 110 ms 2900 KB Output is correct
31 Correct 195 ms 5088 KB Output is correct
32 Correct 202 ms 5032 KB Output is correct
33 Correct 195 ms 5016 KB Output is correct
34 Correct 196 ms 4928 KB Output is correct
35 Correct 201 ms 5020 KB Output is correct
36 Correct 189 ms 5020 KB Output is correct
37 Correct 180 ms 5020 KB Output is correct
38 Correct 157 ms 3748 KB Output is correct
39 Correct 160 ms 3752 KB Output is correct
40 Correct 160 ms 3752 KB Output is correct
41 Correct 176 ms 3804 KB Output is correct
42 Correct 158 ms 3748 KB Output is correct
43 Correct 159 ms 3720 KB Output is correct
44 Correct 150 ms 3700 KB Output is correct
45 Correct 150 ms 3756 KB Output is correct
46 Correct 142 ms 3780 KB Output is correct
47 Correct 739 ms 16200 KB Output is correct
48 Correct 3038 ms 41000 KB Output is correct
49 Correct 3136 ms 42960 KB Output is correct
50 Correct 3136 ms 42852 KB Output is correct
51 Correct 3286 ms 42864 KB Output is correct
52 Correct 3224 ms 42856 KB Output is correct
53 Correct 3551 ms 42852 KB Output is correct
54 Correct 3462 ms 43112 KB Output is correct
55 Correct 3736 ms 43324 KB Output is correct
56 Correct 3299 ms 43688 KB Output is correct
57 Correct 3351 ms 43612 KB Output is correct
58 Correct 3010 ms 43704 KB Output is correct
59 Correct 2699 ms 43204 KB Output is correct
60 Correct 2581 ms 43320 KB Output is correct
61 Correct 2650 ms 43152 KB Output is correct
62 Correct 2557 ms 42968 KB Output is correct
63 Correct 2519 ms 42872 KB Output is correct
64 Correct 2624 ms 42876 KB Output is correct
65 Correct 2581 ms 42640 KB Output is correct
66 Correct 2391 ms 42628 KB Output is correct
67 Correct 2370 ms 42600 KB Output is correct