Submission #737589

#TimeUsernameProblemLanguageResultExecution timeMemory
737589GrindMachineBubble Sort 2 (JOI18_bubblesort2)C++17
100 / 100
3736 ms43704 KiB
// Om Namah Shivaya #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; typedef long long int ll; typedef long double ld; typedef pair<int, int> pii; typedef pair<ll, ll> pll; #define fastio ios_base::sync_with_stdio(false); cin.tie(NULL) #define pb push_back #define endl '\n' #define sz(a) a.size() #define setbits(x) __builtin_popcountll(x) #define ff first #define ss second #define conts continue #define ceil2(x, y) ((x + y - 1) / (y)) #define all(a) a.begin(), a.end() #define rall(a) a.rbegin(), a.rend() #define yes cout << "Yes" << endl #define no cout << "No" << endl #define rep(i, n) for(int i = 0; i < n; ++i) #define rep1(i, n) for(int i = 1; i <= n; ++i) #define rev(i, s, e) for(int i = s; i >= e; --i) #define trav(i, a) for(auto &i : a) template<typename T> void amin(T &a, T b) { a = min(a, b); } template<typename T> void amax(T &a, T b) { a = max(a, b); } #ifdef LOCAL #include "debug.h" #else #define debug(x) 42 #endif /* refs: edi: http://s3-ap-northeast-1.amazonaws.com/data.cms.ioi-jp.org/open-2018/2018-open-bubblesort2-sol-en.pdf https://codeforces.com/blog/entry/61340?#comment-452982 (read edi of linked usaco problem, it contains the proof for the approach mentioned in the joi edi) let's rewrite every index of a as (ai,i) so that all guys are unique let bi = final pos of guy i in sorted a[] key obs: in one pass of bubblesort, a guy may move how many ever places to the right but it can move at most 1 place to the left so for every guy, lower bound on #of ops = i-b[i] how to find ans using the lower bounds? in fact, ans = max(all lower bounds) i.e ans = max(i-b[i]) for all i for a guy with positive i-b[i], he either moves left (i-b[i] is positive cuz someone bigger than a[i] is there to the left, so when this bigger guy moves to the right, this guy would move one step to the left) for a guy with i-b[i] = 0, he never moves right (may move left tho) so max(i-b[i]) dec by 1 in every op until it becomes 0 proof complete queries can be handled efficiently using lazysegtree + fenwick tree */ #include "bubblesort2.h" const int MOD = 1e9 + 7; const int N = 1e5 + 5; const int inf1 = int(1e9) + 5; const ll inf2 = ll(1e18) + 5; template<typename T> struct fenwick { int siz; vector<T> tree; fenwick(int n) { siz = n; tree = vector<T>(n + 1); } int lsb(int x) { return x & -x; } void build(vector<T> &a, int n) { for (int i = 1; i <= n; ++i) { int par = i + lsb(i); tree[i] += a[i]; if (par <= siz) { tree[par] += tree[i]; } } } void pupd(int i, T v) { i++; while (i <= siz) { tree[i] += v; i += lsb(i); } } T sum(int i) { i++; T res = 0; while (i) { res += tree[i]; i -= lsb(i); } return res; } T query(int l, int r) { if (l > r) return 0; T res = sum(r) - sum(l - 1); return res; } }; template<typename T> struct lazysegtree { /*=======================================================*/ struct data { int a; }; struct lazy { int a; }; data d_neutral = { -inf1}; lazy l_neutral = {0}; void merge(data &curr, data &left, data &right) { curr.a = max(left.a, right.a); } void create(int x, int lx, int rx, T v) { tr[x].a = v; } void modify(int x, int lx, int rx, T v) { if (v.ff == 1) { // set tr[x].a = v.ss; } else { // add lz[x].a = v.ss; } } void propagate(int x, int lx, int rx) { ll v = lz[x].a; if (!v) return; tr[x].a += v; if (rx - lx > 1) { lz[2 * x + 1].a += v; lz[2 * x + 2].a += v; } lz[x] = l_neutral; } /*=======================================================*/ int siz = 1; vector<data> tr; vector<lazy> lz; lazysegtree() { } lazysegtree(int n) { while (siz < n) siz *= 2; tr.assign(2 * siz, d_neutral); lz.assign(2 * siz, l_neutral); } void build(vector<T> &a, int n, int x, int lx, int rx) { if (rx - lx == 1) { if (lx < n) { create(x, lx, rx, a[lx]); } return; } int mid = (lx + rx) / 2; build(a, n, 2 * x + 1, lx, mid); build(a, n, 2 * x + 2, mid, rx); merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]); } void build(vector<T> &a, int n) { build(a, n, 0, 0, siz); } void rupd(int l, int r, T v, int x, int lx, int rx) { propagate(x, lx, rx); if (lx >= r or rx <= l) return; if (lx >= l and rx <= r) { modify(x, lx, rx, v); propagate(x, lx, rx); return; } int mid = (lx + rx) / 2; rupd(l, r, v, 2 * x + 1, lx, mid); rupd(l, r, v, 2 * x + 2, mid, rx); merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]); } void rupd(int l, int r, T v) { rupd(l, r + 1, v, 0, 0, siz); } data query(int l, int r, int x, int lx, int rx) { propagate(x, lx, rx); if (lx >= r or rx <= l) return d_neutral; if (lx >= l and rx <= r) return tr[x]; int mid = (lx + rx) / 2; data curr; data left = query(l, r, 2 * x + 1, lx, mid); data right = query(l, r, 2 * x + 2, mid, rx); merge(curr, left, right); return curr; } data query(int l, int r) { return query(l, r + 1, 0, 0, siz); } }; vector<int> countScans(vector<int> a, vector<int> qx, vector<int> qv) { int n = sz(a); int q = sz(qx); vector<pii> b; rep(i, n) { b.pb({a[i], i}); } rep(i, q) { b.pb({qv[i], qx[i]}); } sort(all(b)); b.resize(unique(all(b)) - b.begin()); int siz = sz(b); auto get_ind = [&](pii p) { return lower_bound(all(b), p) - b.begin(); }; lazysegtree<pii> st(siz + 5); fenwick<int> fenw(siz + 5); rep(i, n) { int ind = get_ind({a[i], i}); st.rupd(ind, ind, {1, i}); fenw.pupd(ind, 1); } rep(i, n) { int ind = get_ind({a[i], i}); st.rupd(ind + 1, siz, {2, -1}); } vector<int> ans(q); rep(id, q) { int i = qx[id]; int v = qv[id]; int ind1 = get_ind({a[i], i}); st.rupd(ind1, ind1, {1, -inf1}); st.rupd(ind1, siz, {2, 1}); fenw.pupd(ind1, -1); a[i] = v; int ind2 = get_ind({a[i], i}); int smaller = fenw.query(0, ind2 - 1); st.rupd(ind2, ind2, {1, i - smaller}); st.rupd(ind2 + 1, siz, {2, -1}); fenw.pupd(ind2, 1); ans[id] = st.query(0, siz).a; } return ans; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...