Submission #737579

# Submission time Handle Problem Language Result Execution time Memory
737579 2023-05-07T11:25:42 Z GrindMachine Bubble Sort 2 (JOI18_bubblesort2) C++17
100 / 100
3141 ms 55264 KB
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi: http://s3-ap-northeast-1.amazonaws.com/data.cms.ioi-jp.org/open-2018/2018-open-bubblesort2-sol-en.pdf
https://codeforces.com/blog/entry/61340?#comment-452982
(read edi of linked usaco problem, it contains the proof for the approach mentioned in the joi edi)

*/

#include "bubblesort2.h"

const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct fenwick {
    int siz;
    vector<T> tree;

    fenwick(int n) {
        siz = n;
        tree = vector<T>(n + 1);
    }

    int lsb(int x) {
        return x & -x;
    }

    void build(vector<T> &a, int n) {
        for (int i = 1; i <= n; ++i) {
            int par = i + lsb(i);
            tree[i] += a[i];

            if (par <= siz) {
                tree[par] += tree[i];
            }
        }
    }

    void pupd(int i, T v) {
        i++;

        while (i <= siz) {
            tree[i] += v;
            i += lsb(i);
        }
    }

    T sum(int i) {
        i++;

        T res = 0;

        while (i) {
            res += tree[i];
            i -= lsb(i);
        }

        return res;
    }

    T query(int l, int r) {
        if (l > r) return 0;
        T res = sum(r) - sum(l - 1);
        return res;
    }
};

template<typename T>
struct lazysegtree {
    /*=======================================================*/

    struct data {
        int a;
    };

    struct lazy {
        int a;
    };

    data d_neutral = { -inf1};
    lazy l_neutral = {0};

    void merge(data &curr, data &left, data &right) {
        curr.a = max(left.a, right.a);
    }

    void create(int x, int lx, int rx, T v) {
        tr[x].a = v;
    }

    void modify(int x, int lx, int rx, T v) {
        if (v.ff == 1) {
            // set
            tr[x].a = v.ss;
        }
        else {
            // add
            lz[x].a = v.ss;
        }
    }

    void propagate(int x, int lx, int rx) {
        ll v = lz[x].a;
        if (!v) return;

        tr[x].a += v;

        if (rx - lx > 1) {
            lz[2 * x + 1].a += v;
            lz[2 * x + 2].a += v;
        }

        lz[x] = l_neutral;
    }

    /*=======================================================*/

    int siz = 1;
    vector<data> tr;
    vector<lazy> lz;

    lazysegtree() {

    }

    lazysegtree(int n) {
        while (siz < n) siz *= 2;
        tr.assign(2 * siz, d_neutral);
        lz.assign(2 * siz, l_neutral);
    }

    void build(vector<T> &a, int n, int x, int lx, int rx) {
        if (rx - lx == 1) {
            if (lx < n) {
                create(x, lx, rx, a[lx]);
            }

            return;
        }

        int mid = (lx + rx) / 2;

        build(a, n, 2 * x + 1, lx, mid);
        build(a, n, 2 * x + 2, mid, rx);

        merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]);
    }

    void build(vector<T> &a, int n) {
        build(a, n, 0, 0, siz);
    }

    void rupd(int l, int r, T v, int x, int lx, int rx) {
        propagate(x, lx, rx);

        if (lx >= r or rx <= l) return;
        if (lx >= l and rx <= r) {
            modify(x, lx, rx, v);
            propagate(x, lx, rx);
            return;
        }

        int mid = (lx + rx) / 2;

        rupd(l, r, v, 2 * x + 1, lx, mid);
        rupd(l, r, v, 2 * x + 2, mid, rx);

        merge(tr[x], tr[2 * x + 1], tr[2 * x + 2]);
    }

    void rupd(int l, int r, T v) {
        rupd(l, r + 1, v, 0, 0, siz);
    }

    data query(int l, int r, int x, int lx, int rx) {
        propagate(x, lx, rx);

        if (lx >= r or rx <= l) return d_neutral;
        if (lx >= l and rx <= r) return tr[x];

        int mid = (lx + rx) / 2;

        data curr;
        data left = query(l, r, 2 * x + 1, lx, mid);
        data right = query(l, r, 2 * x + 2, mid, rx);

        merge(curr, left, right);
        return curr;
    }

    data query(int l, int r) {
        return query(l, r + 1, 0, 0, siz);
    }
};

vector<int> countScans(vector<int> a, vector<int> qx, vector<int> qv) {
    int n = sz(a);
    int q = sz(qx);

    vector<pii> b;
    rep(i, n) {
        b.pb({a[i], i});
    }
    rep(i, q) {
        b.pb({qv[i], qx[i]});
    }

    sort(all(b));
    b.resize(unique(all(b)) - b.begin());
    int siz = sz(b);

    auto get_ind = [&](pii p) {
        return lower_bound(all(b), p) - b.begin();
    };

    lazysegtree<pii> st(siz + 5);
    fenwick<int> fenw(siz + 5);

    rep(i, n) {
        int ind = get_ind({a[i], i});
        st.rupd(ind, ind, {1, i});
        fenw.pupd(ind, 1);
    }

    rep(i, n) {
        int ind = get_ind({a[i], i});
        st.rupd(ind + 1, siz, {2, -1});
    }

    vector<int> ans(q);

    rep(id, q) {
        int i = qx[id];
        int v = qv[id];

        int ind1 = get_ind({a[i], i});
        st.rupd(ind1, ind1, {1, -inf1});
        st.rupd(ind1, siz, {2, 1});
        fenw.pupd(ind1, -1);

        a[i] = v;

        int ind2 = get_ind({a[i], i});
        int smaller = fenw.query(0, ind2 - 1);
        st.rupd(ind2, ind2, {1, i - smaller});
        st.rupd(ind2 + 1, siz, {2, -1});
        fenw.pupd(ind2, 1);

        ans[id] = st.query(0, siz).a;
    }

    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 340 KB Output is correct
2 Correct 3 ms 312 KB Output is correct
3 Correct 6 ms 468 KB Output is correct
4 Correct 7 ms 468 KB Output is correct
5 Correct 6 ms 468 KB Output is correct
6 Correct 6 ms 436 KB Output is correct
7 Correct 6 ms 468 KB Output is correct
8 Correct 6 ms 524 KB Output is correct
9 Correct 6 ms 440 KB Output is correct
10 Correct 6 ms 596 KB Output is correct
11 Correct 6 ms 468 KB Output is correct
12 Correct 6 ms 440 KB Output is correct
13 Correct 5 ms 468 KB Output is correct
14 Correct 7 ms 472 KB Output is correct
15 Correct 6 ms 468 KB Output is correct
16 Correct 5 ms 472 KB Output is correct
17 Correct 6 ms 468 KB Output is correct
18 Correct 5 ms 436 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 340 KB Output is correct
2 Correct 3 ms 312 KB Output is correct
3 Correct 6 ms 468 KB Output is correct
4 Correct 7 ms 468 KB Output is correct
5 Correct 6 ms 468 KB Output is correct
6 Correct 6 ms 436 KB Output is correct
7 Correct 6 ms 468 KB Output is correct
8 Correct 6 ms 524 KB Output is correct
9 Correct 6 ms 440 KB Output is correct
10 Correct 6 ms 596 KB Output is correct
11 Correct 6 ms 468 KB Output is correct
12 Correct 6 ms 440 KB Output is correct
13 Correct 5 ms 468 KB Output is correct
14 Correct 7 ms 472 KB Output is correct
15 Correct 6 ms 468 KB Output is correct
16 Correct 5 ms 472 KB Output is correct
17 Correct 6 ms 468 KB Output is correct
18 Correct 5 ms 436 KB Output is correct
19 Correct 21 ms 980 KB Output is correct
20 Correct 26 ms 1144 KB Output is correct
21 Correct 25 ms 1144 KB Output is correct
22 Correct 27 ms 1156 KB Output is correct
23 Correct 26 ms 1100 KB Output is correct
24 Correct 25 ms 1068 KB Output is correct
25 Correct 24 ms 1100 KB Output is correct
26 Correct 24 ms 1076 KB Output is correct
27 Correct 23 ms 1080 KB Output is correct
28 Correct 24 ms 1060 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 38 ms 1516 KB Output is correct
2 Correct 106 ms 3136 KB Output is correct
3 Correct 184 ms 5440 KB Output is correct
4 Correct 181 ms 5396 KB Output is correct
5 Correct 198 ms 5472 KB Output is correct
6 Correct 191 ms 5400 KB Output is correct
7 Correct 190 ms 5420 KB Output is correct
8 Correct 187 ms 5408 KB Output is correct
9 Correct 186 ms 5408 KB Output is correct
10 Correct 157 ms 4224 KB Output is correct
11 Correct 158 ms 4320 KB Output is correct
12 Correct 185 ms 4312 KB Output is correct
13 Correct 153 ms 4320 KB Output is correct
14 Correct 146 ms 4320 KB Output is correct
15 Correct 152 ms 4288 KB Output is correct
16 Correct 151 ms 4256 KB Output is correct
17 Correct 142 ms 4260 KB Output is correct
18 Correct 143 ms 4256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 340 KB Output is correct
2 Correct 3 ms 312 KB Output is correct
3 Correct 6 ms 468 KB Output is correct
4 Correct 7 ms 468 KB Output is correct
5 Correct 6 ms 468 KB Output is correct
6 Correct 6 ms 436 KB Output is correct
7 Correct 6 ms 468 KB Output is correct
8 Correct 6 ms 524 KB Output is correct
9 Correct 6 ms 440 KB Output is correct
10 Correct 6 ms 596 KB Output is correct
11 Correct 6 ms 468 KB Output is correct
12 Correct 6 ms 440 KB Output is correct
13 Correct 5 ms 468 KB Output is correct
14 Correct 7 ms 472 KB Output is correct
15 Correct 6 ms 468 KB Output is correct
16 Correct 5 ms 472 KB Output is correct
17 Correct 6 ms 468 KB Output is correct
18 Correct 5 ms 436 KB Output is correct
19 Correct 21 ms 980 KB Output is correct
20 Correct 26 ms 1144 KB Output is correct
21 Correct 25 ms 1144 KB Output is correct
22 Correct 27 ms 1156 KB Output is correct
23 Correct 26 ms 1100 KB Output is correct
24 Correct 25 ms 1068 KB Output is correct
25 Correct 24 ms 1100 KB Output is correct
26 Correct 24 ms 1076 KB Output is correct
27 Correct 23 ms 1080 KB Output is correct
28 Correct 24 ms 1060 KB Output is correct
29 Correct 38 ms 1516 KB Output is correct
30 Correct 106 ms 3136 KB Output is correct
31 Correct 184 ms 5440 KB Output is correct
32 Correct 181 ms 5396 KB Output is correct
33 Correct 198 ms 5472 KB Output is correct
34 Correct 191 ms 5400 KB Output is correct
35 Correct 190 ms 5420 KB Output is correct
36 Correct 187 ms 5408 KB Output is correct
37 Correct 186 ms 5408 KB Output is correct
38 Correct 157 ms 4224 KB Output is correct
39 Correct 158 ms 4320 KB Output is correct
40 Correct 185 ms 4312 KB Output is correct
41 Correct 153 ms 4320 KB Output is correct
42 Correct 146 ms 4320 KB Output is correct
43 Correct 152 ms 4288 KB Output is correct
44 Correct 151 ms 4256 KB Output is correct
45 Correct 142 ms 4260 KB Output is correct
46 Correct 143 ms 4256 KB Output is correct
47 Correct 710 ms 19692 KB Output is correct
48 Correct 2844 ms 52128 KB Output is correct
49 Correct 3141 ms 55160 KB Output is correct
50 Correct 3092 ms 55068 KB Output is correct
51 Correct 3092 ms 55072 KB Output is correct
52 Correct 3048 ms 55068 KB Output is correct
53 Correct 3038 ms 55160 KB Output is correct
54 Correct 2726 ms 55212 KB Output is correct
55 Correct 2889 ms 55264 KB Output is correct
56 Correct 2724 ms 55192 KB Output is correct
57 Correct 2923 ms 55232 KB Output is correct
58 Correct 2835 ms 55236 KB Output is correct
59 Correct 2545 ms 53400 KB Output is correct
60 Correct 2284 ms 53404 KB Output is correct
61 Correct 2468 ms 53416 KB Output is correct
62 Correct 2432 ms 53180 KB Output is correct
63 Correct 2421 ms 53016 KB Output is correct
64 Correct 2419 ms 53020 KB Output is correct
65 Correct 2240 ms 52648 KB Output is correct
66 Correct 2241 ms 52624 KB Output is correct
67 Correct 2244 ms 52620 KB Output is correct