// Om Namah Shivaya
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a, b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a, b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
refs:
edi
thread: https://codeforces.com/blog/entry/47677?#comment-320681
circular array problems: try to find some cutpoint and transform into linear array problem
find a pos m s.t for any given order, nobody crosses the edge m -> m+1
let cnt(i) = #of elves that are paired up with dwarf x
how to check if given pos m is good?
starting from every pos, we will try our best to create an overflow
following should hold for all pos x:
cnt(x) + cnt(x+1) + ... + cnt(m) <= #of indices in range [x,m] (note: +1 in circular array and range in circular array)
cnt(x) + cnt(x+1) + ... + cnt(m) - (#of indices in range [x,m]) <= 0
(cnt(x)-1) + (cnt(x+1)-1) + ... + (cnt(m)-1) <= 0
replace all cnt(x) with cnt(x)-1,
cnt(x) + cnt(x+1) + ... + cnt(m) <= 0
rewrite in terms of prefix sums
let p(i) = sum[cnt(x)], x <= i (no circular stuff here)
if x > m:
p(n) - p(x) + p(x) = p(n) = 0 (p(n) = 0 because there are n dwarves and n elves)
if x <= m:
p(m) - p(x-1) <= 0
dont care abt first condition cuz p(n) is always 0
we must pick m s.t 2nd condition is satisfied
we can do this by picking m that has min val of p(m), so subtracting it with any other p(x) value would always be <= 0
once m is picked, we can cut the array at point (m,m+1):
now run greedy algo:
consider dwarfs in increasing order of new indices
when considering dwarf, first add all elves that belong to this dwarf to the active set
then, assign the elf with smallest value that has power > power of this dwarf
if such an elf doesnt exist, then assign the elf with lowest power
(idk formal proof, but sounds somewhat convincing)
*/
const int MOD = 1e9 + 7;
const int N = 1e5 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
void solve(int test_case)
{
ll n; cin >> n;
vector<ll> go(n + 5);
rep1(i, n) cin >> go[i];
vector<ll> a(n + 5), b(n + 5);
rep1(i, n) cin >> a[i];
rep1(i, n) cin >> b[i];
vector<ll> cnt(n + 5);
vector<ll> enter[n + 5];
rep1(i, n) cnt[go[i]]++, enter[go[i]].pb(i);
rep1(i, n) cnt[i]--;
vector<ll> pref(n + 5);
rep1(i, n) pref[i] = pref[i - 1] + cnt[i];
ll m = min_element(pref.begin() + 1, pref.begin() + n + 1) - pref.begin();
vector<ll> indices;
for (int i = m + 1; i <= n; ++i) {
indices.pb(i);
}
rep1(i, m) indices.pb(i);
set<ll> st;
ll ans = 0;
trav(dwarf, indices) {
trav(elf, enter[dwarf]) {
st.insert(b[elf]);
}
auto it = st.upper_bound(a[dwarf]);
if (it == st.end()) {
assert(!st.empty());
st.erase(st.begin());
}
else {
ans++;
st.erase(it);
}
}
cout << ans << endl;
}
int main()
{
fastio;
int t = 1;
// cin >> t;
rep1(i, t) {
solve(i);
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
579 ms |
59056 KB |
Output is correct |
2 |
Correct |
345 ms |
57344 KB |
Output is correct |
3 |
Correct |
446 ms |
71296 KB |
Output is correct |
4 |
Correct |
464 ms |
72696 KB |
Output is correct |
5 |
Correct |
312 ms |
50996 KB |
Output is correct |
6 |
Correct |
316 ms |
50236 KB |
Output is correct |
7 |
Correct |
377 ms |
54280 KB |
Output is correct |
8 |
Correct |
322 ms |
49436 KB |
Output is correct |
9 |
Correct |
401 ms |
57320 KB |
Output is correct |
10 |
Correct |
338 ms |
54588 KB |
Output is correct |