답안 #71042

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
71042 2018-08-24T04:40:30 Z qkxwsm Cats or Dogs (JOI18_catdog) C++17
100 / 100
389 ms 86764 KB
#include "catdog.h"
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;

struct chash
{
	int operator()(int x) const
	{
		x ^= (x >> 20) ^ (x >> 12);
		return x ^ (x >> 7) ^ (x >> 4);
	}
	int operator()(long long x) const
	{
		return x ^ (x >> 32);
	}
};

template<typename T> using orderedset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T, typename U> using hashtable = gp_hash_table<T, U, chash>;

template<class T>
void ckmin(T &a, T b)
{
	a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
	a = max(a, b);
}
template<class T, class U>
T normalize(T x, U mod = 1000000007)
{
	return (((x % mod) + mod) % mod);
}
static long long randomizell(long long mod)
{
	return ((1ll << 45) * rand() + (1ll << 30) * rand() + (1ll << 15) * rand() + rand()) % mod;
}
static int randomize(int mod)
{
	return ((1ll << 15) * rand() + rand()) % mod;
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define PF push_front
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define debug(x) cerr << #x << " = " << x << endl;

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-10;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 100013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<pll, pll> ppp;
typedef pair<ld, ld> pdd;

int N;
vector<int> edge[MAXN];
int parent[MAXN], depth[MAXN];
int heavy[MAXN], head[MAXN], ranking[MAXN], subtree[MAXN], siz[MAXN];
int arr[MAXN];
pll dp[MAXN];
pll big[3] = {{0, 0}, {0, INF}, {INF, 0}};

ppp comb(ppp lt, ppp rt)
{
		ppp res;
		res.fi.fi = min(lt.fi.fi + rt.fi.fi, lt.fi.se + rt.se.fi);
		res.fi.se = min(lt.fi.fi + rt.fi.se, lt.fi.se + rt.se.se);
		res.se.fi = min(lt.se.fi + rt.fi.fi, lt.se.se + rt.se.fi);
		res.se.se = min(lt.se.fi + rt.fi.se, lt.se.se + rt.se.se);
		return res;
}
struct segtree
{
	//range[L...R] = cost to change from color x to color y at L...R INCLUDING ALL THE DPS ON THE WAY
	//excepts ranges are reversed: L...R means cost from R...L - 1
	vector<ppp> seg;
	void resize(int x)
	{
		seg.resize(x);
	}
	void update(int w, int L, int R, int a, pll p)
	{
		if (a < L || R < a)
		{
			return;
		}
		if (L == R)
		{
			//each time you change something, make it super expensive to update its parents
			seg[w].fi.fi += p.fi;
			seg[w].fi.se += p.fi;
			seg[w].se.fi += p.se;
			seg[w].se.se += p.se;
			return;
		}
		int mid = (L + R) >> 1;
		update(w << 1, L, mid, a, p);
		update(w << 1 | 1, mid + 1, R, a, p);
		seg[w] = comb(seg[w << 1], seg[w << 1 | 1]);
	}
};

//cost of considering x -> x + 1

segtree seg[MAXN];

pll operator + (const pll &a, const pll &b)
{
	return {a.fi + b.fi, a.se + b.se};
}
pll operator - (const pll &a, const pll &b)
{
	return {a.fi - b.fi, a.se - b.se};
}
pll trans(int u, int v)
{
	return big[v] - big[u];
}
void dfs(int u)
{
	subtree[u] = 1;
	for (int v : edge[u])
	{
		if (v == parent[u]) continue;
		parent[v] = u;
		depth[v] = depth[u] + 1;
		dfs(v);
		subtree[u] += subtree[v];
	}
	heavy[u] = N;
	for (int v : edge[u])
	{
		if (v == parent[u]) continue;
		if (subtree[v] * 2 >= subtree[u]) heavy[u] = v;
	}
}
void dfs_heavy(int u)
{
	if (heavy[u] != N)
	{
		head[heavy[u]] = head[u];
		ranking[heavy[u]] = ranking[u] + 1;
		dfs_heavy(heavy[u]);
	}
	for (int v : edge[u])
	{
		if (v == parent[u]) continue;
		if (v == heavy[u]) continue;
		ranking[v] = 0;
		head[v] = v;
		dfs_heavy(v);
	}
	return;
}
void initialize(int n, vector<int> a, vector<int> b)
{
	N = n;
	for (int i = 0; i < N - 1; i++)
	{
		int u = a[i], v = b[i];
		u--; v--;
		edge[u].PB(v);
		edge[v].PB(u);
	}
	parent[N] = N; parent[0] = N;
	dfs(0);
	dfs_heavy(0);
	for (int i = 0; i < N; i++)
	{
		// cerr << head[i] << ' ';
		siz[head[i]]++;
	}
	// cerr << endl;
	for (int i = 0; i < N; i++)
	{
		ranking[i] = siz[head[i]] - ranking[i] - 1;
	}
	for (int i = 0; i < N; i++)
	{
		if (siz[i] == 0) continue;
		seg[i].resize((1 << (33 - __builtin_clz(siz[i] + 1))) + 1);
		fill(seg[i].seg.begin(), seg[i].seg.end(), MP(MP(0, 1), MP(1, 0)));
	}
}
//0, 3, 4; 1, 2; 5, 6; 8, 9
//0 -> 3 -> 4; 2 -> 1; 6 -> 5; 8; 9;
void upd(int u, pll p)
{
	//cost here is actually cost L...R + 1; we want to change cost L, L + 1 once L gets changed
	//each seg INCLUDES the guys from its bad children!!!
	// cerr << "upd " << u << ' ' << p.fi << ' ' << p.se << endl;
	ppp stor = seg[head[u]].seg[1];
	pll was = {min(stor.fi.fi, stor.se.fi), min(stor.fi.se, stor.se.se)};
	seg[head[u]].update(1, 0, siz[head[u]] - 1, ranking[u], p);
	stor = seg[head[u]].seg[1];
	pll cur = {min(stor.fi.fi, stor.se.fi), min(stor.fi.se, stor.se.se)};
	// cerr << "ending at " << parent[head[u]] << " increases " << (cur - was).fi << ' ' << (cur - was).se << endl;
	// cerr << cur1.fi << ' ' << cur1.se << endl;
	if (head[u] == 0)
	{
		return;
	}
	upd(parent[head[u]], cur - was);
}
int setval(int u, int v)
{
	// cerr << "setval " << u << ' ' << v << endl;
	pll change = trans(arr[u], v);
	arr[u] = v;
	upd(u, change);
	ppp ans = seg[0].seg[1];
	// cerr << "color " << v << " ans " << ans.fi.fi << ' ' << ans.fi.se << ' ' << ans.se.fi << ' ' << ans.se.se << endl;
	return min(min(ans.fi.fi, ans.fi.se), min(ans.se.fi, ans.se.se));
}
int cat(int u)
{
	u--;
	return setval(u, 1);
}
int dog(int u)
{
	u--;
	return setval(u, 2);
}
int neighbor(int u)
{
	u--;
	return setval(u, 0);
}

Compilation message

catdog.cpp:44:12: warning: 'int randomize(int)' defined but not used [-Wunused-function]
 static int randomize(int mod)
            ^~~~~~~~~
catdog.cpp:40:18: warning: 'long long int randomizell(long long int)' defined but not used [-Wunused-function]
 static long long randomizell(long long mod)
                  ^~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 7 ms 5112 KB Output is correct
2 Correct 7 ms 5112 KB Output is correct
3 Correct 8 ms 5156 KB Output is correct
4 Correct 7 ms 5192 KB Output is correct
5 Correct 7 ms 5196 KB Output is correct
6 Correct 7 ms 5312 KB Output is correct
7 Correct 7 ms 5364 KB Output is correct
8 Correct 8 ms 5412 KB Output is correct
9 Correct 9 ms 5416 KB Output is correct
10 Correct 7 ms 5420 KB Output is correct
11 Correct 8 ms 5556 KB Output is correct
12 Correct 7 ms 5556 KB Output is correct
13 Correct 7 ms 5556 KB Output is correct
14 Correct 8 ms 5556 KB Output is correct
15 Correct 7 ms 5556 KB Output is correct
16 Correct 7 ms 5556 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 7 ms 5112 KB Output is correct
2 Correct 7 ms 5112 KB Output is correct
3 Correct 8 ms 5156 KB Output is correct
4 Correct 7 ms 5192 KB Output is correct
5 Correct 7 ms 5196 KB Output is correct
6 Correct 7 ms 5312 KB Output is correct
7 Correct 7 ms 5364 KB Output is correct
8 Correct 8 ms 5412 KB Output is correct
9 Correct 9 ms 5416 KB Output is correct
10 Correct 7 ms 5420 KB Output is correct
11 Correct 8 ms 5556 KB Output is correct
12 Correct 7 ms 5556 KB Output is correct
13 Correct 7 ms 5556 KB Output is correct
14 Correct 8 ms 5556 KB Output is correct
15 Correct 7 ms 5556 KB Output is correct
16 Correct 7 ms 5556 KB Output is correct
17 Correct 7 ms 5636 KB Output is correct
18 Correct 9 ms 5776 KB Output is correct
19 Correct 9 ms 5776 KB Output is correct
20 Correct 9 ms 5776 KB Output is correct
21 Correct 10 ms 5776 KB Output is correct
22 Correct 9 ms 5776 KB Output is correct
23 Correct 11 ms 5776 KB Output is correct
24 Correct 10 ms 5864 KB Output is correct
25 Correct 10 ms 5864 KB Output is correct
26 Correct 10 ms 5864 KB Output is correct
27 Correct 7 ms 5864 KB Output is correct
28 Correct 8 ms 5864 KB Output is correct
29 Correct 8 ms 5864 KB Output is correct
30 Correct 9 ms 5864 KB Output is correct
31 Correct 8 ms 5956 KB Output is correct
32 Correct 8 ms 5956 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 7 ms 5112 KB Output is correct
2 Correct 7 ms 5112 KB Output is correct
3 Correct 8 ms 5156 KB Output is correct
4 Correct 7 ms 5192 KB Output is correct
5 Correct 7 ms 5196 KB Output is correct
6 Correct 7 ms 5312 KB Output is correct
7 Correct 7 ms 5364 KB Output is correct
8 Correct 8 ms 5412 KB Output is correct
9 Correct 9 ms 5416 KB Output is correct
10 Correct 7 ms 5420 KB Output is correct
11 Correct 8 ms 5556 KB Output is correct
12 Correct 7 ms 5556 KB Output is correct
13 Correct 7 ms 5556 KB Output is correct
14 Correct 8 ms 5556 KB Output is correct
15 Correct 7 ms 5556 KB Output is correct
16 Correct 7 ms 5556 KB Output is correct
17 Correct 7 ms 5636 KB Output is correct
18 Correct 9 ms 5776 KB Output is correct
19 Correct 9 ms 5776 KB Output is correct
20 Correct 9 ms 5776 KB Output is correct
21 Correct 10 ms 5776 KB Output is correct
22 Correct 9 ms 5776 KB Output is correct
23 Correct 11 ms 5776 KB Output is correct
24 Correct 10 ms 5864 KB Output is correct
25 Correct 10 ms 5864 KB Output is correct
26 Correct 10 ms 5864 KB Output is correct
27 Correct 7 ms 5864 KB Output is correct
28 Correct 8 ms 5864 KB Output is correct
29 Correct 8 ms 5864 KB Output is correct
30 Correct 9 ms 5864 KB Output is correct
31 Correct 8 ms 5956 KB Output is correct
32 Correct 8 ms 5956 KB Output is correct
33 Correct 212 ms 20628 KB Output is correct
34 Correct 130 ms 24368 KB Output is correct
35 Correct 194 ms 24368 KB Output is correct
36 Correct 362 ms 34608 KB Output is correct
37 Correct 50 ms 34608 KB Output is correct
38 Correct 364 ms 39568 KB Output is correct
39 Correct 350 ms 41600 KB Output is correct
40 Correct 349 ms 43388 KB Output is correct
41 Correct 376 ms 45356 KB Output is correct
42 Correct 315 ms 47232 KB Output is correct
43 Correct 316 ms 49116 KB Output is correct
44 Correct 329 ms 51036 KB Output is correct
45 Correct 389 ms 53224 KB Output is correct
46 Correct 354 ms 55180 KB Output is correct
47 Correct 337 ms 56848 KB Output is correct
48 Correct 156 ms 59080 KB Output is correct
49 Correct 206 ms 68104 KB Output is correct
50 Correct 50 ms 68104 KB Output is correct
51 Correct 68 ms 68104 KB Output is correct
52 Correct 33 ms 68104 KB Output is correct
53 Correct 194 ms 68104 KB Output is correct
54 Correct 107 ms 68104 KB Output is correct
55 Correct 217 ms 68104 KB Output is correct
56 Correct 147 ms 68104 KB Output is correct
57 Correct 196 ms 68104 KB Output is correct
58 Correct 50 ms 68104 KB Output is correct
59 Correct 56 ms 68104 KB Output is correct
60 Correct 122 ms 74200 KB Output is correct
61 Correct 133 ms 77040 KB Output is correct
62 Correct 111 ms 77040 KB Output is correct
63 Correct 88 ms 77040 KB Output is correct
64 Correct 99 ms 77040 KB Output is correct
65 Correct 121 ms 77040 KB Output is correct
66 Correct 74 ms 77040 KB Output is correct
67 Correct 102 ms 77040 KB Output is correct
68 Correct 185 ms 77040 KB Output is correct
69 Correct 31 ms 77040 KB Output is correct
70 Correct 16 ms 77040 KB Output is correct
71 Correct 82 ms 77040 KB Output is correct
72 Correct 120 ms 77040 KB Output is correct
73 Correct 245 ms 80320 KB Output is correct
74 Correct 220 ms 80320 KB Output is correct
75 Correct 233 ms 84204 KB Output is correct
76 Correct 206 ms 86764 KB Output is correct
77 Correct 236 ms 86764 KB Output is correct