답안 #706175

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
706175 2023-03-06T03:59:01 Z bLIC 공장들 (JOI14_factories) C++17
100 / 100
5701 ms 379668 KB
/**
 *  Author: Anil Byar
**/
 
#include <bits/stdc++.h>
// #include <ext/pb_ds/assoc_container.hpp>
// #include <ext/pb_ds/tree_policy.hpp>
 
// using namespace __gnu_pbds;
using namespace std;
 
// template<class T>
// using ordered_set = tree<T, null_type, less_equal<T>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
 
 
 
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)(x).size()
#define ft first
#define sd second
#define pb push_back
 
// Source: https://codeforces.com/blog/entry/68809
// { start
void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '"' << x << '"';}
void __print(const string &x) {cerr << '"' << x << '"';}
void __print(bool x) {cerr << (x ? "true" : "false");}
 
template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ','; __print(x.second); cerr << '}';}
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? "," : ""), __print(i); cerr << "}";}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#ifndef ONLINE_JUDGE
#define debug(x...) cerr << "[" << #x << "] = ["; _print(x)
#else
#define debug(x...)
#endif
// } end
 
 
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<pii> vii;
typedef vector<ll> vl;
typedef vector<pll> vll;
typedef vector<vi> vvi;
typedef vector<vii> vvii;
typedef vector<vl> vvl;
 
#define dbg if(0)
 
const ll MOD = 1e9+7;
const ll MOD9 = 998244353;
const ll INFLL = 1e18+5;
const int INF = 1e9;
const int maxN = 5e5+5;
const int maxK = 21;
 
void printbit(int x, int len) {string s="\n";while(len--){s=((x%2)?'1':'0')+s;x/=2;} cout<<s;}
 

ll gcd(ll a, ll b) {if (b > a) {return gcd(b, a);} if (b == 0) {return a;} return gcd(b, a % b);}
ll expo(ll a, ll b, ll mod) {ll res = 1; while (b > 0) {if (b & 1)res = (res * a) % mod; a = (a * a) % mod; b = b >> 1;} return res;}
void extendgcd(ll a, ll b, ll*v) {if (b == 0) {v[0] = 1; v[1] = 10; v[2] = a; return ;} extendgcd(b, a % b, v); ll x = v[1]; v[1] = v[0] - v[1] * (a / b); v[0] = x; return;} //pass an arry of size1 3
ll mod_add(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a + b) % m) + m) % m;}
ll mod_mul(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a * b) % m) + m) % m;}
ll mod_sub(ll a, ll b, ll m) {a = a % m; b = b % m; return (((a - b) % m) + m) % m;}
ll mminv(ll a, ll b) {ll arr[3]; extendgcd(a, b, arr); return mod_add(arr[0], 0, b);} //for non prime b


template<class T>
istream& operator>>(istream&in, vector<T>&v){
    for (T& x:v) in>>x;
    return in;
}
template<class T>
ostream& operator<<(ostream&out, vector<T>&v){
    for (T& x:v) out<<x<<' ';
    cout<<'\n';
    return out;
}
  
template <class T> struct SparseTable {
    int n, K = 25; T ID;
    std::vector<int> lg;
    std::vector<std::vector<T>> table;
    SparseTable(){}
    SparseTable(int _n,T id){
        ID = id;
        n = _n;
        lg.resize(n+1, 0);
        table.resize(n+1, std::vector<T>(K, ID));
    }
    void build(std::vector<T> array){
        for (int i = 2;i<=n;i++) lg[i] = lg[i/2] + 1;
        for (int i = 0;i<n;i++) table[i][0] = array[i];
        for (int i = 1;(1<<i)<=n;i++){
            for (int j = 0;j<=n-(1<<i);j++){
                table[j][i] = oper(table[j][i-1], table[j+(1<<(i-1))][i-1]);
            }
        }
    }
    T oper(T a, T b){return min(a, b);} // change the operation as required
    T query(int a, int b){ // inclusive a, b, i.e. [a, b], indexing 0 to n-1;
        int bit = lg[b-a+1];
        return oper(table[a][bit], table[b+1-(1<<bit)][bit]);
    }
};


int n, m;
ll ans;

ll dist(int a, int b);
vector<vector<pii>> adj;
int par[maxN][maxK];
int dep[maxN];
bool used[maxN];
ll depth[maxN];
int st[maxN], en[maxN];
int tim;
vii tour;
std::vector<int> parent, stree;
vector<ll> nearest;

void DOO(std::vector<std::vector<pii>>& _adj){
    parent.resize((int)_adj.size());
    stree.resize((int)_adj.size());
    nearest.assign((int)_adj.size(), INFLL);
}

int dfssize(int, int);
int dfscentroid(int, int, int);

void build(int node = 1, int par = -1){
    int n = dfssize(node, par);
    int centroid = dfscentroid(node, par, n);
    parent[centroid] = par;
    used[centroid] = true;

    for (const pii &y:adj[centroid]) {
        int x = y.ft;
        if (x!=par && !used[x]) build(x, centroid);
    }
}

int dfssize(int node, int par){
    stree[node] = 1;
    for (const pii &y:adj[node]){
        int x = y.ft;
        if (x!=par && !used[x]) {
            dfssize(x, node);
            stree[node] += stree[x];
        }
    }
    return stree[node];
}

int dfscentroid(int node, int par, int n){
    for (const pii &y:adj[node]){
        int x = y.ft;
        if (x!=par && !used[x] && stree[x]>n/2) return dfscentroid(x, node, n);
    }
    return node;
}

void color(int node){
    nearest[node] = 0;
    int temp = node;
    while(parent[node]!=-1){
        node = parent[node];
        nearest[node] = min(nearest[node], dist(temp, node));
    }
}

void decolor(int node){
    nearest[node] = INFLL;
    while(parent[node]!=-1){
        node = parent[node];
        if (nearest[node]==INFLL) break;
        nearest[node] = INFLL;
    }
}

ll getnearest(int node){
    ll ret = nearest[node];
    int temp = node;
    while(parent[node]!=-1){
        node = parent[node];
        ret = min(ret, dist(temp, node) + nearest[node]);
    }
    return ret;
}



void dfs(int node, int p){
    tour.pb({dep[node], node});
    st[node] = tim++;
    for (const pii &y:adj[node]){
        int x = y.ft;
        if (x==p) continue;
        par[x][0] = node;
        dep[x] = dep[node] + 1;
        depth[x] = depth[node] + y.sd;
        dfs(x, node);
        tour.pb({dep[node], node});
    }
    en[node] = tim++;
}

int kup(int node, int h){
    for (int i = 0;i<maxK;i++){
        if ((h>>i)&1) node = par[node][i];
    }
    return node;
}


int lca(int x, int y){
    if (dep[x]>dep[y]) swap(x, y);
    y = kup(y, dep[y]-dep[x]);
    if (x==y) return x;
    for (int i = maxK-1;i>=0;i--){
        if (par[x][i]!=par[y][i]) x = par[x][i], y = par[y][i];
    }
    return par[x][0];
}

SparseTable<pii> table;
ll dist(int u, int v){
    if (st[u]>st[v]) swap(u, v);
    int lc = table.query(st[u], st[v]).sd;
    return depth[u]+depth[v]-2*depth[lc];
}


void Init(int N, int A[], int B[], int D[]){
    n = N;
    adj.resize(n);
    for (int i = 0;i<n-1;i++){
        int u = A[i], v = B[i], w = D[i];
        adj[u].pb({v, w});
        adj[v].pb({u, w});
    }
    tour.reserve(n);
    dfs(0, -1);
    table = SparseTable<pii>(tim, {INF, -1});
    table.build(tour);

    DOO(adj);
    build(0, -1);
}

long long Query(int S, int X[], int T, int Y[]){
    ll res = INFLL;
    // if (S<T){
        for (int i = 0;i<S;i++) color(X[i]);
        for (int i = 0;i<T;i++) res = min(res, getnearest(Y[i]));
        for (int i = 0;i<S;i++) decolor(X[i]);
    // } else {
    //     for (int i = 0;i<T;i++) color(Y[i]);
    //     for (int i = 0;i<S;i++) res = min(res, getnearest(X[i]));
    //     for (int i = 0;i<T;i++) decolor(Y[i]);
    // }
    return res;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 10 ms 1108 KB Output is correct
2 Correct 438 ms 14156 KB Output is correct
3 Correct 553 ms 14360 KB Output is correct
4 Correct 570 ms 14240 KB Output is correct
5 Correct 655 ms 14580 KB Output is correct
6 Correct 226 ms 14232 KB Output is correct
7 Correct 522 ms 14228 KB Output is correct
8 Correct 531 ms 14240 KB Output is correct
9 Correct 528 ms 14540 KB Output is correct
10 Correct 211 ms 14156 KB Output is correct
11 Correct 557 ms 14416 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 724 KB Output is correct
2 Correct 2570 ms 342068 KB Output is correct
3 Correct 3200 ms 345364 KB Output is correct
4 Correct 1046 ms 342736 KB Output is correct
5 Correct 4030 ms 379668 KB Output is correct
6 Correct 3278 ms 346096 KB Output is correct
7 Correct 1844 ms 77880 KB Output is correct
8 Correct 486 ms 77944 KB Output is correct
9 Correct 1877 ms 82404 KB Output is correct
10 Correct 1876 ms 78776 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 10 ms 1108 KB Output is correct
2 Correct 438 ms 14156 KB Output is correct
3 Correct 553 ms 14360 KB Output is correct
4 Correct 570 ms 14240 KB Output is correct
5 Correct 655 ms 14580 KB Output is correct
6 Correct 226 ms 14232 KB Output is correct
7 Correct 522 ms 14228 KB Output is correct
8 Correct 531 ms 14240 KB Output is correct
9 Correct 528 ms 14540 KB Output is correct
10 Correct 211 ms 14156 KB Output is correct
11 Correct 557 ms 14416 KB Output is correct
12 Correct 2 ms 724 KB Output is correct
13 Correct 2570 ms 342068 KB Output is correct
14 Correct 3200 ms 345364 KB Output is correct
15 Correct 1046 ms 342736 KB Output is correct
16 Correct 4030 ms 379668 KB Output is correct
17 Correct 3278 ms 346096 KB Output is correct
18 Correct 1844 ms 77880 KB Output is correct
19 Correct 486 ms 77944 KB Output is correct
20 Correct 1877 ms 82404 KB Output is correct
21 Correct 1876 ms 78776 KB Output is correct
22 Correct 3295 ms 343700 KB Output is correct
23 Correct 3319 ms 346156 KB Output is correct
24 Correct 4349 ms 347128 KB Output is correct
25 Correct 4648 ms 350616 KB Output is correct
26 Correct 4972 ms 346944 KB Output is correct
27 Correct 5701 ms 374392 KB Output is correct
28 Correct 1271 ms 346196 KB Output is correct
29 Correct 4630 ms 346248 KB Output is correct
30 Correct 4801 ms 345424 KB Output is correct
31 Correct 4482 ms 346348 KB Output is correct
32 Correct 1951 ms 83320 KB Output is correct
33 Correct 458 ms 78096 KB Output is correct
34 Correct 1426 ms 75100 KB Output is correct
35 Correct 1545 ms 75168 KB Output is correct
36 Correct 1749 ms 75808 KB Output is correct
37 Correct 1822 ms 76060 KB Output is correct