Submission #705674

# Submission time Handle Problem Language Result Execution time Memory
705674 2023-03-05T00:13:56 Z danikoynov Radio Towers (IOI22_towers) C++17
100 / 100
1517 ms 43068 KB
#include "towers.h"

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;

int n, h[maxn], pref[maxn], peak_pos;
int cnt = 0;


int par[maxn], rnk[maxn];

int find_leader(int v)
{
    return (v == par[v]) ? v : par[v] = find_leader(par[v]);
}

void unite(int v, int u)
{
    v = find_leader(v);
    u = find_leader(u);
    if (v == u)
        return;

    if (rnk[v] < rnk[u])
        swap(v, u);
    rnk[v] += rnk[u];
    par[u] = v;
}

int dp[maxn], bef[maxn], aft[maxn];


struct node
{
    int max_number, min_number;

    node(int _max_number = 0, int _min_number = 2e9)
    {
        max_number = _max_number;
        min_number = _min_number;
    }
};

node tree[4 * maxn];
node merge_node(node left, node right)
{
    node comb;
    comb.max_number = max(left.max_number, right.max_number);
    comb.min_number = min(left.min_number, right.min_number);
    return comb;
}
void build_tree(int root, int left, int right)
{
    if (left == right)
    {
        tree[root] = node(h[left], h[left]);
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}
void update(int root, int left, int right, int pos, int val)
{
    if (left == right)
    {
        tree[root] = val;
        return;
    }

    int mid = (left + right) / 2;
    if (pos <= mid)
        update(root * 2, left, mid, pos, val);
    else
        update(root * 2 + 1, mid + 1, right, pos, val);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

node query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return 0;

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;
    return merge_node(query(root * 2, left, mid, qleft, qright),
                      query(root * 2 + 1, mid + 1, right, qleft, qright));
}

int find_rightmost(int root, int left, int right, int qleft, int qright, int val)
{
    ///cout << root << " " << left << " " << right << " " << qleft << " " << qright << " " << val << endl;
    if (tree[root].max_number < val ||
            left > qright || right < qleft)
        return 0;

    if (left == right)
        return left;

    int mid = (left + right) / 2;
    if (left >= qleft && right <= qright)
    {
        if (tree[root * 2 + 1].max_number >= val)
            return find_rightmost(root * 2 + 1, mid + 1, right, qleft, qright, val);
        return find_rightmost(root * 2, left, mid, qleft, qright, val);
    }

    return max(find_rightmost(root * 2, left, mid, qleft, qright, val),
               find_rightmost(root * 2 + 1, mid + 1, right, qleft, qright, val));
}

int find_leftmost(int root, int left, int right, int qleft, int qright, int val)
{
    if (tree[root].max_number < val ||
            left > qright || right < qleft)
        return n + 1;

    if (left == right)
        return left;
    int mid = (left + right) / 2;
    if (left >= qleft && right <= qright)
    {
        if (tree[root * 2].max_number >= val)
            return find_leftmost(root * 2, left, mid, qleft, qright, val);
        return find_leftmost(root * 2 + 1, mid + 1, right, qleft, qright, val);

    }

    return min(find_leftmost(root * 2, left, mid, qleft, qright, val),
               find_leftmost(root * 2 + 1, mid + 1, right, qleft, qright, val));
}



struct diff_node
{
    int max_number, min_number;
    int diff_to_right;
    int diff_to_left;

    diff_node()
    {
        max_number = 0;
        min_number = 2e9;
        diff_to_right = 0;
        diff_to_left = 0;
    }
};

diff_node merge_diff(diff_node dn1, diff_node dn2)
{
    diff_node res;
    res.max_number = max(dn1.max_number, dn2.max_number);
    res.min_number = min(dn1.min_number, dn2.min_number);
    res.diff_to_right = max(dn2.max_number - dn1.min_number, max(dn1.diff_to_right, dn2.diff_to_right));
    res.diff_to_left = max(dn1.max_number - dn2.min_number, max(dn1.diff_to_left, dn2.diff_to_left));
    return res;
}

diff_node diff_tree[4 * maxn];
void build_diff_tree(int root, int left, int right)
{
    if (left == right)
    {
        diff_tree[root].max_number = diff_tree[root].min_number = h[left];
        return;
    }

    int mid = (left + right) / 2;
    build_diff_tree(root * 2, left, mid);
    build_diff_tree(root * 2 + 1, mid + 1, right);

    diff_tree[root] = merge_diff(diff_tree[root * 2], diff_tree[root * 2 + 1]);
}

diff_node diff_query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return diff_node();

    if (left >= qleft && right <= qright)
        return diff_tree[root];

    int mid = (left + right) / 2;
    return merge_diff(diff_query(root * 2, left, mid, qleft, qright),
                      diff_query(root * 2 + 1, mid + 1, right, qleft, qright));
}

vector < pair < int, int > > val;
unordered_map < int, int > rev;
vector < int > merge_tree[4 * maxn];

void conquer(int left_root, int right_root, int root)
{
    int idx1 = 0, idx2 = 0;
    while(idx1 < merge_tree[left_root].size() && idx2 < merge_tree[right_root].size())
    {
        if (merge_tree[left_root][idx1] < merge_tree[right_root][idx2])
        {
            merge_tree[root].push_back(merge_tree[left_root][idx1 ++]);
        }
        else
        {
            merge_tree[root].push_back(merge_tree[right_root][idx2 ++]);
        }
    }

    while(idx1 < merge_tree[left_root].size())
                    merge_tree[root].push_back(merge_tree[left_root][idx1 ++]);

    while(idx2 < merge_tree[right_root].size())
                    merge_tree[root].push_back(merge_tree[right_root][idx2 ++]);
}

void divide(int root, int left, int right)
{
    if (left == right)
    {
        merge_tree[root].push_back(val[left].second);
        return;
    }

    int mid = (left + right) / 2;
    divide(root * 2, left, mid);
    divide(root * 2 + 1, mid + 1, right);

    conquer(root * 2, root * 2 + 1, root);
}

int query_max_under_node(int root, int val)
{
    int lf = 0, rf = (int)(merge_tree[root].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (merge_tree[root][mf] <= val)
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    if (rf < 0)
        return 0;
    return merge_tree[root][rf];
}

int query_min_above_node(int root, int val)
{
    int lf = 0, rf = (int)(merge_tree[root].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (merge_tree[root][mf] >= val)
            rf = mf - 1;
        else
            lf = mf + 1;
    }

    if (lf == merge_tree[root].size())
        return n + 1;
    return merge_tree[root][lf];
}

int query_min_above(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return n + 1;

    if (left >= qleft && right <= qright)
        return query_min_above_node(root, val);

    int mid = (left + right) / 2;
    return min(query_min_above(root * 2, left, mid, qleft, qright, val),
               query_min_above(root * 2 + 1, mid + 1, right, qleft, qright, val));
}

int query_max_under(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return 0;

    if (left >= qleft && right <= qright)
        return query_max_under_node(root, val);

    int mid = (left + right) / 2;
    return max(query_max_under(root * 2, left, mid, qleft, qright, val),
               query_max_under(root * 2 + 1, mid + 1, right, qleft, qright, val));
}

int query_between_node(int root, int min_val, int max_val)
{
    int lf = 0, rf = (int)(merge_tree[root].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (merge_tree[root][mf] <= max_val)
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    int rb = rf;

        lf = 0;
         rf = (int)(merge_tree[root].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (merge_tree[root][mf] >= min_val)
            rf = mf - 1;
        else
            lf = mf + 1;
    }

    int lb = lf;

    return (rb - lb + 1);

}

int query_between(int root, int left, int right, int qleft, int qright, int min_val, int max_val)
{
    if (left > qright || right < qleft)
        return 0;

    if (left >= qleft && right <= qright)
        return query_between_node(root, min_val, max_val);

    int mid = (left + right) / 2;
    return query_between(root * 2, left, mid, qleft, qright, min_val, max_val) +
            query_between(root * 2 + 1, mid + 1, right, qleft, qright, min_val, max_val);
}
void init(int N, std::vector<int> H)
{
    n = N;
    for (int i = 0; i < n; i ++)
        h[i + 1] = H[i], rev[H[i]] = i + 1;

    for (int i = 1; i <= n; i ++)
        if (h[i] > h[i - 1] && h[i] > h[i + 1])
            cnt ++;
    for (int i = 2; i < n; i ++)
    {
        pref[i] = pref[i - 1];
        if (h[i] > h[i - 1] && h[i] > h[i + 1])
        {
            pref[i] ++, peak_pos = i;

        }
    }

    build_tree(1, 1, n);
    build_diff_tree(1, 1, n);
    vector < int > st;
    st.push_back(0);
    for (int i = 1; i <= n; i ++)
    {


        while(!st.empty() && h[st.back()] >= h[i])
            st.pop_back();
        bef[i] = st.back();
        st.push_back(i);
    }

    st.clear();
    st.push_back(n + 1);
    for (int i = n; i > 0; i --)
    {


        while(!st.empty() && h[st.back()] >= h[i])
            st.pop_back();
        aft[i] = st.back();
        st.push_back(i);
    }

    for (int i = 1; i <= n; i ++)
    {

        ///cout << bef[i] << " " << aft[i] << endl;
        int h1 = 0, h2 = 0;
        if (bef[i] != i - 1)
            h1 = query(1, 1, n, bef[i] + 1, i - 1).max_number;
        if (bef[i] == 0)
            h1 = 2e9 + 10;
        if (aft[i] != i + 1)
            h2 = query(1, 1, n, i + 1, aft[i] - 1).max_number;
        if (aft[i] == n + 1)
            h2 = 2e9 + 10;
        val.push_back({min(h1, h2) - h[i], i});
        ///cout << query(1, 1, n, bef[i] + 1)
    }

    sort(val.begin(), val.end());

    divide(1, 0, val.size() - 1);
    //for (int v : val)
    //    cout << v << " ";
    // cout << endl;
}


vector < int > act[maxn];
int cnt_query = 0;
int max_towers(int L, int R, int D)
{

    L ++;
    R ++;
    cnt_query ++;


    int lf = 0, rf = (int)(val.size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (val[mf].first < D)
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    ///vector < int > towers;
    int leftmost = n + 1, rightmost = 0, ans = 0;
    rightmost = query_max_under(1, 0, val.size() - 1, lf, val.size() - 1, R);
    leftmost = query_min_above(1, 0, val.size() - 1, lf, val.size() - 1, L);
    ans = query_between(1, 0, val.size() - 1, lf, val.size() - 1, L, R);
    /**for (int i = lf; i < val.size(); i ++)
    {
        if (val[i].second >= L && val[i].second <= R)
        {
            ///ans ++;
            ///towers.push_back(val[i].second);
            ///leftmost = min(leftmost, val[i].second);
            ///rightmost = max(rightmost, val[i].second);
        }
    }*/
    ///cout << leftmost << " " << rightmost << endl;

    if (leftmost > rightmost)
    {
        int lowest_tower = rev[query(1, 1, n, L, R).min_number];
        leftmost = lowest_tower;
        rightmost = lowest_tower;
        ans = 1;
    }

    int highest_tower = 0;
    int La = find_rightmost(1, 1, n, 1, leftmost, h[leftmost] + D);
    diff_node dn = diff_query(1, 1, n, L, La);
    if (dn.diff_to_right >= D)
        ans ++;
    ///cout << La << endl;
    ///cout << leftmost << " " << rightmost << endl;
    /**for (int tower = leftmost - 1; tower >= L; tower --)
    {
        if (tower <= La && h[tower] + D <= highest_tower &&
                highest_tower >= h[leftmost] + D)
        {
            ans ++;
            break;
        }
        highest_tower = max(highest_tower, h[tower]);
    }*/

    highest_tower = 0;
    int Ra = find_leftmost(1, 1, n, rightmost, n, h[rightmost] + D);
    dn = diff_query(1, 1, n, Ra, R);
    if (dn.diff_to_left >= D)
        ans ++;
    /**for (int tower = rightmost + 1; tower <= R; tower ++)
    {

        if (tower >= Ra && h[tower] + D <= highest_tower &&
                highest_tower >= h[rightmost] + D)
        {
            ans ++;
            break;
        }
        highest_tower = max(highest_tower, h[tower]);
    }*/

    return ans;



}

Compilation message

towers.cpp: In function 'void conquer(int, int, int)':
towers.cpp:203:16: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  203 |     while(idx1 < merge_tree[left_root].size() && idx2 < merge_tree[right_root].size())
      |           ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp:203:55: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  203 |     while(idx1 < merge_tree[left_root].size() && idx2 < merge_tree[right_root].size())
      |                                                  ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp:215:16: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  215 |     while(idx1 < merge_tree[left_root].size())
      |           ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp:218:16: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  218 |     while(idx2 < merge_tree[right_root].size())
      |           ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp: In function 'int query_min_above_node(int, int)':
towers.cpp:265:12: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  265 |     if (lf == merge_tree[root].size())
      |         ~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp: In function 'int max_towers(int, int, int)':
towers.cpp:453:9: warning: variable 'highest_tower' set but not used [-Wunused-but-set-variable]
  453 |     int highest_tower = 0;
      |         ^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 521 ms 33328 KB Output is correct
2 Correct 1086 ms 42940 KB Output is correct
3 Correct 1086 ms 42904 KB Output is correct
4 Correct 1055 ms 42864 KB Output is correct
5 Correct 1047 ms 42936 KB Output is correct
6 Correct 1198 ms 42896 KB Output is correct
7 Correct 963 ms 42924 KB Output is correct
8 Correct 11 ms 21456 KB Output is correct
9 Correct 12 ms 21768 KB Output is correct
10 Correct 12 ms 21796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 21460 KB Output is correct
2 Correct 12 ms 21712 KB Output is correct
3 Correct 12 ms 21712 KB Output is correct
4 Correct 11 ms 21712 KB Output is correct
5 Correct 12 ms 21712 KB Output is correct
6 Correct 12 ms 21708 KB Output is correct
7 Correct 14 ms 21744 KB Output is correct
8 Correct 12 ms 21712 KB Output is correct
9 Correct 14 ms 21720 KB Output is correct
10 Correct 14 ms 21764 KB Output is correct
11 Correct 12 ms 21712 KB Output is correct
12 Correct 12 ms 21328 KB Output is correct
13 Correct 15 ms 21712 KB Output is correct
14 Correct 12 ms 21712 KB Output is correct
15 Correct 13 ms 21712 KB Output is correct
16 Correct 12 ms 21712 KB Output is correct
17 Correct 12 ms 21712 KB Output is correct
18 Correct 12 ms 21712 KB Output is correct
19 Correct 11 ms 21712 KB Output is correct
20 Correct 12 ms 21696 KB Output is correct
21 Correct 12 ms 21736 KB Output is correct
22 Correct 11 ms 21764 KB Output is correct
23 Correct 12 ms 21712 KB Output is correct
24 Correct 13 ms 21776 KB Output is correct
25 Correct 13 ms 21584 KB Output is correct
26 Correct 15 ms 21712 KB Output is correct
27 Correct 14 ms 21680 KB Output is correct
28 Correct 12 ms 21744 KB Output is correct
29 Correct 12 ms 21792 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 11 ms 21752 KB Output is correct
32 Correct 11 ms 21712 KB Output is correct
33 Correct 11 ms 21712 KB Output is correct
34 Correct 12 ms 21712 KB Output is correct
35 Correct 11 ms 21712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 21460 KB Output is correct
2 Correct 12 ms 21712 KB Output is correct
3 Correct 12 ms 21712 KB Output is correct
4 Correct 11 ms 21712 KB Output is correct
5 Correct 12 ms 21712 KB Output is correct
6 Correct 12 ms 21708 KB Output is correct
7 Correct 14 ms 21744 KB Output is correct
8 Correct 12 ms 21712 KB Output is correct
9 Correct 14 ms 21720 KB Output is correct
10 Correct 14 ms 21764 KB Output is correct
11 Correct 12 ms 21712 KB Output is correct
12 Correct 12 ms 21328 KB Output is correct
13 Correct 15 ms 21712 KB Output is correct
14 Correct 12 ms 21712 KB Output is correct
15 Correct 13 ms 21712 KB Output is correct
16 Correct 12 ms 21712 KB Output is correct
17 Correct 12 ms 21712 KB Output is correct
18 Correct 12 ms 21712 KB Output is correct
19 Correct 11 ms 21712 KB Output is correct
20 Correct 12 ms 21696 KB Output is correct
21 Correct 12 ms 21736 KB Output is correct
22 Correct 11 ms 21764 KB Output is correct
23 Correct 12 ms 21712 KB Output is correct
24 Correct 13 ms 21776 KB Output is correct
25 Correct 13 ms 21584 KB Output is correct
26 Correct 15 ms 21712 KB Output is correct
27 Correct 14 ms 21680 KB Output is correct
28 Correct 12 ms 21744 KB Output is correct
29 Correct 12 ms 21792 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 11 ms 21752 KB Output is correct
32 Correct 11 ms 21712 KB Output is correct
33 Correct 11 ms 21712 KB Output is correct
34 Correct 12 ms 21712 KB Output is correct
35 Correct 11 ms 21712 KB Output is correct
36 Correct 68 ms 33804 KB Output is correct
37 Correct 103 ms 42540 KB Output is correct
38 Correct 106 ms 42556 KB Output is correct
39 Correct 113 ms 42592 KB Output is correct
40 Correct 99 ms 42540 KB Output is correct
41 Correct 103 ms 42452 KB Output is correct
42 Correct 99 ms 42604 KB Output is correct
43 Correct 89 ms 42900 KB Output is correct
44 Correct 87 ms 42896 KB Output is correct
45 Correct 88 ms 42792 KB Output is correct
46 Correct 92 ms 42680 KB Output is correct
47 Correct 117 ms 42508 KB Output is correct
48 Correct 105 ms 42540 KB Output is correct
49 Correct 99 ms 42556 KB Output is correct
50 Correct 86 ms 42840 KB Output is correct
51 Correct 86 ms 42868 KB Output is correct
52 Correct 102 ms 42540 KB Output is correct
53 Correct 102 ms 42492 KB Output is correct
54 Correct 109 ms 42556 KB Output is correct
55 Correct 106 ms 42904 KB Output is correct
56 Correct 101 ms 42708 KB Output is correct
57 Correct 100 ms 41952 KB Output is correct
58 Correct 103 ms 42492 KB Output is correct
59 Correct 110 ms 42592 KB Output is correct
60 Correct 101 ms 42464 KB Output is correct
61 Correct 99 ms 42444 KB Output is correct
62 Correct 103 ms 42456 KB Output is correct
63 Correct 104 ms 42504 KB Output is correct
64 Correct 87 ms 42936 KB Output is correct
65 Correct 86 ms 42880 KB Output is correct
66 Correct 89 ms 42708 KB Output is correct
67 Correct 95 ms 42928 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1016 ms 42516 KB Output is correct
2 Correct 1472 ms 42508 KB Output is correct
3 Correct 1338 ms 42556 KB Output is correct
4 Correct 1151 ms 42496 KB Output is correct
5 Correct 1247 ms 42560 KB Output is correct
6 Correct 1077 ms 42536 KB Output is correct
7 Correct 1517 ms 42544 KB Output is correct
8 Correct 1062 ms 42944 KB Output is correct
9 Correct 1203 ms 42936 KB Output is correct
10 Correct 1152 ms 42720 KB Output is correct
11 Correct 1123 ms 42756 KB Output is correct
12 Correct 1101 ms 42948 KB Output is correct
13 Correct 1197 ms 42864 KB Output is correct
14 Correct 12 ms 21344 KB Output is correct
15 Correct 14 ms 21712 KB Output is correct
16 Correct 11 ms 21712 KB Output is correct
17 Correct 103 ms 42464 KB Output is correct
18 Correct 98 ms 42456 KB Output is correct
19 Correct 105 ms 42540 KB Output is correct
20 Correct 91 ms 42924 KB Output is correct
21 Correct 84 ms 42940 KB Output is correct
22 Correct 104 ms 42460 KB Output is correct
23 Correct 100 ms 42524 KB Output is correct
24 Correct 110 ms 42496 KB Output is correct
25 Correct 95 ms 42936 KB Output is correct
26 Correct 103 ms 42676 KB Output is correct
27 Correct 13 ms 21704 KB Output is correct
28 Correct 12 ms 21712 KB Output is correct
29 Correct 12 ms 21712 KB Output is correct
30 Correct 12 ms 21792 KB Output is correct
31 Correct 12 ms 21764 KB Output is correct
32 Correct 12 ms 21712 KB Output is correct
33 Correct 13 ms 21700 KB Output is correct
34 Correct 12 ms 21700 KB Output is correct
35 Correct 12 ms 21712 KB Output is correct
36 Correct 11 ms 21712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 285 ms 26364 KB Output is correct
2 Correct 1096 ms 42656 KB Output is correct
3 Correct 1113 ms 42448 KB Output is correct
4 Correct 1080 ms 42540 KB Output is correct
5 Correct 1204 ms 42448 KB Output is correct
6 Correct 1010 ms 42556 KB Output is correct
7 Correct 1130 ms 42512 KB Output is correct
8 Correct 993 ms 42924 KB Output is correct
9 Correct 1046 ms 42876 KB Output is correct
10 Correct 1069 ms 42812 KB Output is correct
11 Correct 1122 ms 42812 KB Output is correct
12 Correct 103 ms 42496 KB Output is correct
13 Correct 111 ms 42488 KB Output is correct
14 Correct 119 ms 42564 KB Output is correct
15 Correct 92 ms 42864 KB Output is correct
16 Correct 101 ms 42720 KB Output is correct
17 Correct 101 ms 41916 KB Output is correct
18 Correct 104 ms 42556 KB Output is correct
19 Correct 107 ms 42500 KB Output is correct
20 Correct 99 ms 42536 KB Output is correct
21 Correct 100 ms 42464 KB Output is correct
22 Correct 113 ms 42552 KB Output is correct
23 Correct 100 ms 42428 KB Output is correct
24 Correct 85 ms 42924 KB Output is correct
25 Correct 84 ms 42924 KB Output is correct
26 Correct 91 ms 42912 KB Output is correct
27 Correct 95 ms 42924 KB Output is correct
28 Correct 12 ms 21700 KB Output is correct
29 Correct 12 ms 21712 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 11 ms 21700 KB Output is correct
32 Correct 12 ms 21744 KB Output is correct
33 Correct 11 ms 21584 KB Output is correct
34 Correct 12 ms 21712 KB Output is correct
35 Correct 14 ms 21668 KB Output is correct
36 Correct 11 ms 21704 KB Output is correct
37 Correct 12 ms 21712 KB Output is correct
38 Correct 12 ms 21760 KB Output is correct
39 Correct 12 ms 21684 KB Output is correct
40 Correct 11 ms 21688 KB Output is correct
41 Correct 11 ms 21752 KB Output is correct
42 Correct 12 ms 21712 KB Output is correct
43 Correct 12 ms 21712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 14 ms 21460 KB Output is correct
2 Correct 12 ms 21712 KB Output is correct
3 Correct 12 ms 21712 KB Output is correct
4 Correct 11 ms 21712 KB Output is correct
5 Correct 12 ms 21712 KB Output is correct
6 Correct 12 ms 21708 KB Output is correct
7 Correct 14 ms 21744 KB Output is correct
8 Correct 12 ms 21712 KB Output is correct
9 Correct 14 ms 21720 KB Output is correct
10 Correct 14 ms 21764 KB Output is correct
11 Correct 12 ms 21712 KB Output is correct
12 Correct 12 ms 21328 KB Output is correct
13 Correct 15 ms 21712 KB Output is correct
14 Correct 12 ms 21712 KB Output is correct
15 Correct 13 ms 21712 KB Output is correct
16 Correct 12 ms 21712 KB Output is correct
17 Correct 12 ms 21712 KB Output is correct
18 Correct 12 ms 21712 KB Output is correct
19 Correct 11 ms 21712 KB Output is correct
20 Correct 12 ms 21696 KB Output is correct
21 Correct 12 ms 21736 KB Output is correct
22 Correct 11 ms 21764 KB Output is correct
23 Correct 12 ms 21712 KB Output is correct
24 Correct 13 ms 21776 KB Output is correct
25 Correct 13 ms 21584 KB Output is correct
26 Correct 15 ms 21712 KB Output is correct
27 Correct 14 ms 21680 KB Output is correct
28 Correct 12 ms 21744 KB Output is correct
29 Correct 12 ms 21792 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 11 ms 21752 KB Output is correct
32 Correct 11 ms 21712 KB Output is correct
33 Correct 11 ms 21712 KB Output is correct
34 Correct 12 ms 21712 KB Output is correct
35 Correct 11 ms 21712 KB Output is correct
36 Correct 68 ms 33804 KB Output is correct
37 Correct 103 ms 42540 KB Output is correct
38 Correct 106 ms 42556 KB Output is correct
39 Correct 113 ms 42592 KB Output is correct
40 Correct 99 ms 42540 KB Output is correct
41 Correct 103 ms 42452 KB Output is correct
42 Correct 99 ms 42604 KB Output is correct
43 Correct 89 ms 42900 KB Output is correct
44 Correct 87 ms 42896 KB Output is correct
45 Correct 88 ms 42792 KB Output is correct
46 Correct 92 ms 42680 KB Output is correct
47 Correct 117 ms 42508 KB Output is correct
48 Correct 105 ms 42540 KB Output is correct
49 Correct 99 ms 42556 KB Output is correct
50 Correct 86 ms 42840 KB Output is correct
51 Correct 86 ms 42868 KB Output is correct
52 Correct 102 ms 42540 KB Output is correct
53 Correct 102 ms 42492 KB Output is correct
54 Correct 109 ms 42556 KB Output is correct
55 Correct 106 ms 42904 KB Output is correct
56 Correct 101 ms 42708 KB Output is correct
57 Correct 100 ms 41952 KB Output is correct
58 Correct 103 ms 42492 KB Output is correct
59 Correct 110 ms 42592 KB Output is correct
60 Correct 101 ms 42464 KB Output is correct
61 Correct 99 ms 42444 KB Output is correct
62 Correct 103 ms 42456 KB Output is correct
63 Correct 104 ms 42504 KB Output is correct
64 Correct 87 ms 42936 KB Output is correct
65 Correct 86 ms 42880 KB Output is correct
66 Correct 89 ms 42708 KB Output is correct
67 Correct 95 ms 42928 KB Output is correct
68 Correct 1016 ms 42516 KB Output is correct
69 Correct 1472 ms 42508 KB Output is correct
70 Correct 1338 ms 42556 KB Output is correct
71 Correct 1151 ms 42496 KB Output is correct
72 Correct 1247 ms 42560 KB Output is correct
73 Correct 1077 ms 42536 KB Output is correct
74 Correct 1517 ms 42544 KB Output is correct
75 Correct 1062 ms 42944 KB Output is correct
76 Correct 1203 ms 42936 KB Output is correct
77 Correct 1152 ms 42720 KB Output is correct
78 Correct 1123 ms 42756 KB Output is correct
79 Correct 1101 ms 42948 KB Output is correct
80 Correct 1197 ms 42864 KB Output is correct
81 Correct 12 ms 21344 KB Output is correct
82 Correct 14 ms 21712 KB Output is correct
83 Correct 11 ms 21712 KB Output is correct
84 Correct 103 ms 42464 KB Output is correct
85 Correct 98 ms 42456 KB Output is correct
86 Correct 105 ms 42540 KB Output is correct
87 Correct 91 ms 42924 KB Output is correct
88 Correct 84 ms 42940 KB Output is correct
89 Correct 104 ms 42460 KB Output is correct
90 Correct 100 ms 42524 KB Output is correct
91 Correct 110 ms 42496 KB Output is correct
92 Correct 95 ms 42936 KB Output is correct
93 Correct 103 ms 42676 KB Output is correct
94 Correct 13 ms 21704 KB Output is correct
95 Correct 12 ms 21712 KB Output is correct
96 Correct 12 ms 21712 KB Output is correct
97 Correct 12 ms 21792 KB Output is correct
98 Correct 12 ms 21764 KB Output is correct
99 Correct 12 ms 21712 KB Output is correct
100 Correct 13 ms 21700 KB Output is correct
101 Correct 12 ms 21700 KB Output is correct
102 Correct 12 ms 21712 KB Output is correct
103 Correct 11 ms 21712 KB Output is correct
104 Correct 1188 ms 40816 KB Output is correct
105 Correct 1430 ms 42524 KB Output is correct
106 Correct 1379 ms 42508 KB Output is correct
107 Correct 1393 ms 42536 KB Output is correct
108 Correct 1256 ms 42556 KB Output is correct
109 Correct 1197 ms 42528 KB Output is correct
110 Correct 1280 ms 42436 KB Output is correct
111 Correct 879 ms 42888 KB Output is correct
112 Correct 978 ms 42920 KB Output is correct
113 Correct 969 ms 42792 KB Output is correct
114 Correct 1053 ms 42844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 521 ms 33328 KB Output is correct
2 Correct 1086 ms 42940 KB Output is correct
3 Correct 1086 ms 42904 KB Output is correct
4 Correct 1055 ms 42864 KB Output is correct
5 Correct 1047 ms 42936 KB Output is correct
6 Correct 1198 ms 42896 KB Output is correct
7 Correct 963 ms 42924 KB Output is correct
8 Correct 11 ms 21456 KB Output is correct
9 Correct 12 ms 21768 KB Output is correct
10 Correct 12 ms 21796 KB Output is correct
11 Correct 14 ms 21460 KB Output is correct
12 Correct 12 ms 21712 KB Output is correct
13 Correct 12 ms 21712 KB Output is correct
14 Correct 11 ms 21712 KB Output is correct
15 Correct 12 ms 21712 KB Output is correct
16 Correct 12 ms 21708 KB Output is correct
17 Correct 14 ms 21744 KB Output is correct
18 Correct 12 ms 21712 KB Output is correct
19 Correct 14 ms 21720 KB Output is correct
20 Correct 14 ms 21764 KB Output is correct
21 Correct 12 ms 21712 KB Output is correct
22 Correct 12 ms 21328 KB Output is correct
23 Correct 15 ms 21712 KB Output is correct
24 Correct 12 ms 21712 KB Output is correct
25 Correct 13 ms 21712 KB Output is correct
26 Correct 12 ms 21712 KB Output is correct
27 Correct 12 ms 21712 KB Output is correct
28 Correct 12 ms 21712 KB Output is correct
29 Correct 11 ms 21712 KB Output is correct
30 Correct 12 ms 21696 KB Output is correct
31 Correct 12 ms 21736 KB Output is correct
32 Correct 11 ms 21764 KB Output is correct
33 Correct 12 ms 21712 KB Output is correct
34 Correct 13 ms 21776 KB Output is correct
35 Correct 13 ms 21584 KB Output is correct
36 Correct 15 ms 21712 KB Output is correct
37 Correct 14 ms 21680 KB Output is correct
38 Correct 12 ms 21744 KB Output is correct
39 Correct 12 ms 21792 KB Output is correct
40 Correct 12 ms 21712 KB Output is correct
41 Correct 11 ms 21752 KB Output is correct
42 Correct 11 ms 21712 KB Output is correct
43 Correct 11 ms 21712 KB Output is correct
44 Correct 12 ms 21712 KB Output is correct
45 Correct 11 ms 21712 KB Output is correct
46 Correct 68 ms 33804 KB Output is correct
47 Correct 103 ms 42540 KB Output is correct
48 Correct 106 ms 42556 KB Output is correct
49 Correct 113 ms 42592 KB Output is correct
50 Correct 99 ms 42540 KB Output is correct
51 Correct 103 ms 42452 KB Output is correct
52 Correct 99 ms 42604 KB Output is correct
53 Correct 89 ms 42900 KB Output is correct
54 Correct 87 ms 42896 KB Output is correct
55 Correct 88 ms 42792 KB Output is correct
56 Correct 92 ms 42680 KB Output is correct
57 Correct 117 ms 42508 KB Output is correct
58 Correct 105 ms 42540 KB Output is correct
59 Correct 99 ms 42556 KB Output is correct
60 Correct 86 ms 42840 KB Output is correct
61 Correct 86 ms 42868 KB Output is correct
62 Correct 102 ms 42540 KB Output is correct
63 Correct 102 ms 42492 KB Output is correct
64 Correct 109 ms 42556 KB Output is correct
65 Correct 106 ms 42904 KB Output is correct
66 Correct 101 ms 42708 KB Output is correct
67 Correct 100 ms 41952 KB Output is correct
68 Correct 103 ms 42492 KB Output is correct
69 Correct 110 ms 42592 KB Output is correct
70 Correct 101 ms 42464 KB Output is correct
71 Correct 99 ms 42444 KB Output is correct
72 Correct 103 ms 42456 KB Output is correct
73 Correct 104 ms 42504 KB Output is correct
74 Correct 87 ms 42936 KB Output is correct
75 Correct 86 ms 42880 KB Output is correct
76 Correct 89 ms 42708 KB Output is correct
77 Correct 95 ms 42928 KB Output is correct
78 Correct 1016 ms 42516 KB Output is correct
79 Correct 1472 ms 42508 KB Output is correct
80 Correct 1338 ms 42556 KB Output is correct
81 Correct 1151 ms 42496 KB Output is correct
82 Correct 1247 ms 42560 KB Output is correct
83 Correct 1077 ms 42536 KB Output is correct
84 Correct 1517 ms 42544 KB Output is correct
85 Correct 1062 ms 42944 KB Output is correct
86 Correct 1203 ms 42936 KB Output is correct
87 Correct 1152 ms 42720 KB Output is correct
88 Correct 1123 ms 42756 KB Output is correct
89 Correct 1101 ms 42948 KB Output is correct
90 Correct 1197 ms 42864 KB Output is correct
91 Correct 12 ms 21344 KB Output is correct
92 Correct 14 ms 21712 KB Output is correct
93 Correct 11 ms 21712 KB Output is correct
94 Correct 103 ms 42464 KB Output is correct
95 Correct 98 ms 42456 KB Output is correct
96 Correct 105 ms 42540 KB Output is correct
97 Correct 91 ms 42924 KB Output is correct
98 Correct 84 ms 42940 KB Output is correct
99 Correct 104 ms 42460 KB Output is correct
100 Correct 100 ms 42524 KB Output is correct
101 Correct 110 ms 42496 KB Output is correct
102 Correct 95 ms 42936 KB Output is correct
103 Correct 103 ms 42676 KB Output is correct
104 Correct 13 ms 21704 KB Output is correct
105 Correct 12 ms 21712 KB Output is correct
106 Correct 12 ms 21712 KB Output is correct
107 Correct 12 ms 21792 KB Output is correct
108 Correct 12 ms 21764 KB Output is correct
109 Correct 12 ms 21712 KB Output is correct
110 Correct 13 ms 21700 KB Output is correct
111 Correct 12 ms 21700 KB Output is correct
112 Correct 12 ms 21712 KB Output is correct
113 Correct 11 ms 21712 KB Output is correct
114 Correct 285 ms 26364 KB Output is correct
115 Correct 1096 ms 42656 KB Output is correct
116 Correct 1113 ms 42448 KB Output is correct
117 Correct 1080 ms 42540 KB Output is correct
118 Correct 1204 ms 42448 KB Output is correct
119 Correct 1010 ms 42556 KB Output is correct
120 Correct 1130 ms 42512 KB Output is correct
121 Correct 993 ms 42924 KB Output is correct
122 Correct 1046 ms 42876 KB Output is correct
123 Correct 1069 ms 42812 KB Output is correct
124 Correct 1122 ms 42812 KB Output is correct
125 Correct 103 ms 42496 KB Output is correct
126 Correct 111 ms 42488 KB Output is correct
127 Correct 119 ms 42564 KB Output is correct
128 Correct 92 ms 42864 KB Output is correct
129 Correct 101 ms 42720 KB Output is correct
130 Correct 101 ms 41916 KB Output is correct
131 Correct 104 ms 42556 KB Output is correct
132 Correct 107 ms 42500 KB Output is correct
133 Correct 99 ms 42536 KB Output is correct
134 Correct 100 ms 42464 KB Output is correct
135 Correct 113 ms 42552 KB Output is correct
136 Correct 100 ms 42428 KB Output is correct
137 Correct 85 ms 42924 KB Output is correct
138 Correct 84 ms 42924 KB Output is correct
139 Correct 91 ms 42912 KB Output is correct
140 Correct 95 ms 42924 KB Output is correct
141 Correct 12 ms 21700 KB Output is correct
142 Correct 12 ms 21712 KB Output is correct
143 Correct 12 ms 21712 KB Output is correct
144 Correct 11 ms 21700 KB Output is correct
145 Correct 12 ms 21744 KB Output is correct
146 Correct 11 ms 21584 KB Output is correct
147 Correct 12 ms 21712 KB Output is correct
148 Correct 14 ms 21668 KB Output is correct
149 Correct 11 ms 21704 KB Output is correct
150 Correct 12 ms 21712 KB Output is correct
151 Correct 12 ms 21760 KB Output is correct
152 Correct 12 ms 21684 KB Output is correct
153 Correct 11 ms 21688 KB Output is correct
154 Correct 11 ms 21752 KB Output is correct
155 Correct 12 ms 21712 KB Output is correct
156 Correct 12 ms 21712 KB Output is correct
157 Correct 1188 ms 40816 KB Output is correct
158 Correct 1430 ms 42524 KB Output is correct
159 Correct 1379 ms 42508 KB Output is correct
160 Correct 1393 ms 42536 KB Output is correct
161 Correct 1256 ms 42556 KB Output is correct
162 Correct 1197 ms 42528 KB Output is correct
163 Correct 1280 ms 42436 KB Output is correct
164 Correct 879 ms 42888 KB Output is correct
165 Correct 978 ms 42920 KB Output is correct
166 Correct 969 ms 42792 KB Output is correct
167 Correct 1053 ms 42844 KB Output is correct
168 Correct 10 ms 21340 KB Output is correct
169 Correct 804 ms 29004 KB Output is correct
170 Correct 1301 ms 42508 KB Output is correct
171 Correct 1393 ms 42524 KB Output is correct
172 Correct 1360 ms 42556 KB Output is correct
173 Correct 1265 ms 42556 KB Output is correct
174 Correct 1367 ms 42432 KB Output is correct
175 Correct 1366 ms 42472 KB Output is correct
176 Correct 1022 ms 42924 KB Output is correct
177 Correct 1132 ms 43068 KB Output is correct
178 Correct 1067 ms 42896 KB Output is correct
179 Correct 983 ms 42664 KB Output is correct