답안 #687712

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
687712 2023-01-26T21:38:14 Z QwertyPi Paths (RMI21_paths) C++14
100 / 100
563 ms 25544 KB
#include <bits/stdc++.h>
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("Ofast")
#define int long long
using namespace std;

const int MAXN = 2e5 + 11;
vector<pair<int, int>> G[MAXN];
int w[MAXN], mx_dis[MAXN];
int to[MAXN], a[MAXN], l[MAXN], r[MAXN];
int leaf_cnt = 0;
void dfs(int v, int pa = -1){
    int sons_cnt = 0;
    l[v] = MAXN, r[v] = -1;
    for(auto& [u, we] : G[v]){
        if(u != pa){
            sons_cnt++;
            w[u] = we; dfs(u, v);
            if(mx_dis[u] + w[u] >= mx_dis[v]){
                to[v] = to[u];
                mx_dis[v] = mx_dis[u] + w[u];
            }
            l[v] = min(l[v], l[u]), r[v] = max(r[v], r[u]);
        }
    }
    if(sons_cnt == 0){
        to[v] = ++leaf_cnt; l[v] = r[v] = leaf_cnt;
    }
    a[to[v]] += w[v];
}

namespace Treap{

    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    struct node{
        int key, size, sum, prior;
        node *ll, *rr;
        node(int key) : key(key), size(1), sum(key), prior(rng()), ll(nullptr), rr(nullptr) {};
    };

    int size(node* t){
        return t ? t->size : 0;
    }
    int sum(node* t){
        return t ? t->sum : 0;
    }
    void maintain(node*& t){
        if(!t) return;
        t->size = size(t->ll) + 1 + size(t->rr);
        t->sum = sum(t->ll) + t->key + sum(t->rr);
    }
    void _crawl(node* t){
        if(!t) return;
        if(t->ll) _crawl(t->ll);
        cout << t->key << ' ';
        if(t->rr) _crawl(t->rr);
    }
    void crawl(node* t){
        _crawl(t); cout << endl;
    }
    void split_size(node* t, node*& l, node*& r, int l_size){
        if(!t) return void(l = r = nullptr);
        if(size(t->ll) >= l_size) split_size(t->ll, l, t->ll, l_size), r = t;
        else split_size(t->rr, t->rr, r, l_size - size(t->ll) - 1), l = t;
        maintain(l); maintain(r);
    }
    void split_key(node* t, node*& l, node*& r, int key){
        if(!t) return void(l = r = nullptr);
        if(t->key >= key) split_key(t->ll, l, t->ll, key), r = t;
        else split_key(t->rr, t->rr, r, key), l = t; 
        maintain(l); maintain(r);
    }
    void merge(node*& t, node* l, node* r){
        if(!l || !r) t = l ? l : r;
        else if(l->prior > r->prior) merge(l->rr, l->rr, r), t = l;
        else merge(r->ll, l, r->ll), t = r;
        maintain(t);
    }
    node* subtree_min(node* t){
        while(t->ll) t = t->ll;
        return t;
    }
    node *a = nullptr;
    void add(int key){
        node *l, *v, *r;
        v = new node(key);
        split_key(a, l, r, key);
        merge(r, v, r);
        merge(a, l, r);
    }
    void erase(int key){
        node *l, *m, *r;
        split_key(a, l, m, key);
        split_size(m, m, r, 1);
        delete m;
        merge(a, l, r);
    }
    int kth_max_sum(int k){
        node *l, *r;
        split_size(a, l, r, max(0LL, size(a) - k));
        int res = sum(r);
        merge(a, l, r);
        return res;
    }
};

namespace Segtree{
    int t[MAXN << 2], a[MAXN];
    int cmp(int q1, int q2){
        if(q1 == -1 || q2 == -1) return q1 == -1 ? q2 : q1;
        else return a[q1] > a[q2] ? q1 : q2;
    }
    void upd(int i, int va, int v, int l, int r){
        if(l == r) { a[i] = va; t[v] = i; return; }
        int m = (l + r) >> 1;
        if(i <= m) upd(i, va, v * 2 + 1, l, m);
        else upd(i, va, v * 2 + 2, m + 1, r);
        t[v] = cmp(t[v * 2 + 1], t[v * 2 + 2]);
    }
    int qry_max(int ql, int qr, int v, int l, int r){
        if(qr < l || r < ql) return -1;
        if(ql <= l && r <= qr) return t[v];
        int m = (l + r) >> 1;
        int q1 = qry_max(ql, qr, v * 2 + 1, l, m);
        int q2 = qry_max(ql, qr, v * 2 + 2, m + 1, r);
        return cmp(q1, q2);
    }
};

int ans[MAXN]; int N, K; 
void dfs2(int v, int pa = -1){
    ans[v] = Treap::kth_max_sum(K);
    for(auto& [u, we] : G[v]){
        if(u != pa){
            using Segtree::a;
            int bl = 1, br = leaf_cnt, sl = l[u], sr = r[u];
            int q1 = Segtree::qry_max(bl, sl - 1, 0, 1, leaf_cnt), q2 = Segtree::qry_max(sr + 1, br, 0, 1, leaf_cnt);
            int qo = Segtree::cmp(q1, q2); Treap::erase(a[qo]); Treap::add(a[qo] + w[u]); Segtree::upd(qo, a[qo] + w[u], 0, 1, leaf_cnt);
            int qn = Segtree::qry_max(sl, sr, 0, 1, leaf_cnt); Treap::erase(a[qn]); Treap::add(a[qn] - w[u]); Segtree::upd(qn, a[qn] - w[u], 0, 1, leaf_cnt);
            dfs2(u, v);
            Treap::erase(a[qo]); Treap::add(a[qo] - w[u]); Segtree::upd(qo, a[qo] - w[u], 0, 1, leaf_cnt);
            Treap::erase(a[qn]); Treap::add(a[qn] + w[u]); Segtree::upd(qn, a[qn] + w[u], 0, 1, leaf_cnt);
        }
    }
}

int32_t main(){
    cin.tie(0); cout.tie(0);
    cin >> N >> K; int sum_w = 0;
    for(int i = 0; i < N - 1; i++){
        int u, v, w; cin >> u >> v >> w;
        G[u].push_back({v, w});
        G[v].push_back({u, w});
        sum_w += w;
    }
    
    if(N == 2){
        cout << sum_w << endl;
        cout << sum_w << endl;
        return 0;
    }

    int rt = 1;
    if(G[rt].size() == 1) rt = G[rt][0].first;
    dfs(rt);
    for(int i = 1; i <= leaf_cnt; i++) Treap::add(a[i]);
    for(int i = 1; i <= leaf_cnt; i++) Segtree::upd(i, a[i], 0, 1, leaf_cnt);
    dfs2(rt);
    for(int i = 1; i <= N; i++) cout << ans[i] << '\n';
}

Compilation message

Main.cpp: In function 'void dfs(long long int, long long int)':
Main.cpp:15:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   15 |     for(auto& [u, we] : G[v]){
      |               ^
Main.cpp: In function 'void dfs2(long long int, long long int)':
Main.cpp:133:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  133 |     for(auto& [u, we] : G[v]){
      |               ^
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 5076 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 5076 KB Output is correct
8 Correct 6 ms 5204 KB Output is correct
9 Correct 5 ms 5204 KB Output is correct
10 Correct 5 ms 5204 KB Output is correct
11 Correct 6 ms 5204 KB Output is correct
12 Correct 5 ms 5204 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 5076 KB Output is correct
8 Correct 6 ms 5204 KB Output is correct
9 Correct 5 ms 5204 KB Output is correct
10 Correct 5 ms 5204 KB Output is correct
11 Correct 6 ms 5204 KB Output is correct
12 Correct 5 ms 5204 KB Output is correct
13 Correct 12 ms 5372 KB Output is correct
14 Correct 9 ms 5444 KB Output is correct
15 Correct 8 ms 5332 KB Output is correct
16 Correct 9 ms 5388 KB Output is correct
17 Correct 8 ms 5332 KB Output is correct
18 Correct 8 ms 5312 KB Output is correct
19 Correct 9 ms 5332 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 563 ms 21044 KB Output is correct
2 Correct 538 ms 23208 KB Output is correct
3 Correct 405 ms 16804 KB Output is correct
4 Correct 529 ms 20928 KB Output is correct
5 Correct 540 ms 21968 KB Output is correct
6 Correct 539 ms 21140 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 3 ms 5076 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 3 ms 5076 KB Output is correct
7 Correct 3 ms 5076 KB Output is correct
8 Correct 6 ms 5204 KB Output is correct
9 Correct 5 ms 5204 KB Output is correct
10 Correct 5 ms 5204 KB Output is correct
11 Correct 6 ms 5204 KB Output is correct
12 Correct 5 ms 5204 KB Output is correct
13 Correct 12 ms 5372 KB Output is correct
14 Correct 9 ms 5444 KB Output is correct
15 Correct 8 ms 5332 KB Output is correct
16 Correct 9 ms 5388 KB Output is correct
17 Correct 8 ms 5332 KB Output is correct
18 Correct 8 ms 5312 KB Output is correct
19 Correct 9 ms 5332 KB Output is correct
20 Correct 563 ms 21044 KB Output is correct
21 Correct 538 ms 23208 KB Output is correct
22 Correct 405 ms 16804 KB Output is correct
23 Correct 529 ms 20928 KB Output is correct
24 Correct 540 ms 21968 KB Output is correct
25 Correct 539 ms 21140 KB Output is correct
26 Correct 551 ms 21376 KB Output is correct
27 Correct 537 ms 23228 KB Output is correct
28 Correct 513 ms 23756 KB Output is correct
29 Correct 433 ms 16888 KB Output is correct
30 Correct 546 ms 21444 KB Output is correct
31 Correct 479 ms 21336 KB Output is correct
32 Correct 556 ms 24432 KB Output is correct
33 Correct 556 ms 23460 KB Output is correct
34 Correct 356 ms 18380 KB Output is correct
35 Correct 550 ms 23508 KB Output is correct
36 Correct 472 ms 25544 KB Output is correct