답안 #687704

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
687704 2023-01-26T21:27:10 Z QwertyPi Paths (RMI21_paths) C++14
68 / 100
567 ms 21512 KB
#include <bits/stdc++.h>
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("Ofast")
#define int long long
using namespace std;

const int MAXN = 1e5 + 11;
vector<pair<int, int>> G[MAXN];
int w[MAXN], mx_dis[MAXN];
int to[MAXN], a[MAXN], l[MAXN], r[MAXN];
int leaf_cnt = 0;
void dfs(int v, int pa = -1){
    int sons_cnt = 0;
    l[v] = MAXN, r[v] = -1;
    for(auto& [u, we] : G[v]){
        if(u != pa){
            sons_cnt++;
            w[u] = we; dfs(u, v);
            if(mx_dis[u] + w[u] > mx_dis[v]){
                to[v] = to[u];
                mx_dis[v] = mx_dis[u] + w[u];
            }
            l[v] = min(l[v], l[u]), r[v] = max(r[v], r[u]);
        }
    }
    if(sons_cnt == 0){
        to[v] = ++leaf_cnt; l[v] = r[v] = leaf_cnt;
    }
    a[to[v]] += w[v];
}

namespace Treap{

    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    struct node{
        int key, size, sum, prior;
        node *ll, *rr;
        node(int key) : key(key), size(1), sum(key), prior(rng()), ll(nullptr), rr(nullptr) {};
    };

    int size(node* t){
        return t ? t->size : 0;
    }
    int sum(node* t){
        return t ? t->sum : 0;
    }
    void maintain(node*& t){
        if(!t) return;
        t->size = size(t->ll) + 1 + size(t->rr);
        t->sum = sum(t->ll) + t->key + sum(t->rr);
    }
    void _crawl(node* t){
        if(!t) return;
        if(t->ll) _crawl(t->ll);
        cout << t->key << ' ';
        if(t->rr) _crawl(t->rr);
    }
    void crawl(node* t){
        _crawl(t); cout << endl;
    }
    void split_size(node* t, node*& l, node*& r, int l_size){
        if(!t) return void(l = r = nullptr);
        if(size(t->ll) >= l_size) split_size(t->ll, l, t->ll, l_size), r = t;
        else split_size(t->rr, t->rr, r, l_size - size(t->ll) - 1), l = t;
        maintain(l); maintain(r);
    }
    void split_key(node* t, node*& l, node*& r, int key){
        if(!t) return void(l = r = nullptr);
        if(t->key >= key) split_key(t->ll, l, t->ll, key), r = t;
        else split_key(t->rr, t->rr, r, key), l = t; 
        maintain(l); maintain(r);
    }
    void merge(node*& t, node* l, node* r){
        if(!l || !r) t = l ? l : r;
        else if(l->prior > r->prior) merge(l->rr, l->rr, r), t = l;
        else merge(r->ll, l, r->ll), t = r;
        maintain(t);
    }
    node* subtree_min(node* t){
        while(t->ll) t = t->ll;
        return t;
    }
    node *a = nullptr;
    void add(int key){
        node *l, *v, *r;
        v = new node(key);
        split_key(a, l, r, key);
        merge(r, v, r);
        merge(a, l, r);
    }
    void erase(int key){
        node *l, *m, *r;
        split_key(a, l, m, key);
        split_size(m, m, r, 1);
        delete m;
        merge(a, l, r);
    }
    int kth_max_sum(int k){
        node *l, *r;
        split_size(a, l, r, max(0LL, size(a) - k));
        int res = sum(r);
        merge(a, l, r);
        return res;
    }
};

namespace Segtree{
    int t[MAXN << 2], a[MAXN];
    int cmp(int q1, int q2){
        if(q1 == -1 || q2 == -1) return q1 == -1 ? q2 : q1;
        else return a[q1] > a[q2] ? q1 : q2;
    }
    void upd(int i, int va, int v, int l, int r){
        if(l == r) { a[i] = va; t[v] = i; return; }
        int m = (l + r) >> 1;
        if(i <= m) upd(i, va, v * 2 + 1, l, m);
        else upd(i, va, v * 2 + 2, m + 1, r);
        t[v] = cmp(t[v * 2 + 1], t[v * 2 + 2]);
    }
    int qry_max(int ql, int qr, int v, int l, int r){
        if(qr < l || r < ql) return -1;
        if(ql <= l && r <= qr) return t[v];
        int m = (l + r) >> 1;
        int q1 = qry_max(ql, qr, v * 2 + 1, l, m);
        int q2 = qry_max(ql, qr, v * 2 + 2, m + 1, r);
        return cmp(q1, q2);
    }
};

int ans[MAXN]; int N, K; 
void dfs2(int v, int pa = -1){
    ans[v] = Treap::kth_max_sum(K);
    for(auto& [u, we] : G[v]){
        if(u != pa){
            using Segtree::a;
            int bl = 1, br = leaf_cnt, sl = l[u], sr = r[u];
            int q1 = Segtree::qry_max(bl, sl - 1, 0, 1, leaf_cnt), q2 = Segtree::qry_max(sr + 1, br, 0, 1, leaf_cnt);
            int qo = Segtree::cmp(q1, q2); Treap::erase(a[qo]); Treap::add(a[qo] + w[u]); Segtree::upd(qo, a[qo] + w[u], 0, 1, leaf_cnt);
            int qn = Segtree::qry_max(sl, sr, 0, 1, leaf_cnt); Treap::erase(a[qn]); Treap::add(a[qn] - w[u]); Segtree::upd(qn, a[qn] - w[u], 0, 1, leaf_cnt);
            dfs2(u, v);
            Treap::erase(a[qo]); Treap::add(a[qo] - w[u]); Segtree::upd(qo, a[qo] - w[u], 0, 1, leaf_cnt);
            Treap::erase(a[qn]); Treap::add(a[qn] + w[u]); Segtree::upd(qn, a[qn] + w[u], 0, 1, leaf_cnt);
        }
    }
}

int32_t main(){
    cin.tie(0); cout.tie(0);
    cin >> N >> K; int sum_w = 0;
    for(int i = 0; i < N - 1; i++){
        int u, v, w; cin >> u >> v >> w;
        G[u].push_back({v, w});
        G[v].push_back({u, w});
        sum_w += w;
    }
    
    if(N == 2){
        cout << sum_w << endl;
        cout << sum_w << endl;
        return 0;
    }

    int rt = 1;
    if(G[rt].size() == 1) rt = G[rt][0].first;
    dfs(rt);
    for(int i = 1; i <= leaf_cnt; i++) Treap::add(a[i]);
    for(int i = 1; i <= leaf_cnt; i++) Segtree::upd(i, a[i], 0, 1, leaf_cnt);
    dfs2(rt);
    for(int i = 1; i <= N; i++) cout << ans[i] << '\n';
}

Compilation message

Main.cpp: In function 'void dfs(long long int, long long int)':
Main.cpp:15:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
   15 |     for(auto& [u, we] : G[v]){
      |               ^
Main.cpp: In function 'void dfs2(long long int, long long int)':
Main.cpp:133:15: warning: structured bindings only available with '-std=c++17' or '-std=gnu++17'
  133 |     for(auto& [u, we] : G[v]){
      |               ^
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 4 ms 2864 KB Output is correct
9 Correct 4 ms 2892 KB Output is correct
10 Correct 4 ms 2808 KB Output is correct
11 Correct 5 ms 2772 KB Output is correct
12 Correct 4 ms 2772 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 4 ms 2864 KB Output is correct
9 Correct 4 ms 2892 KB Output is correct
10 Correct 4 ms 2808 KB Output is correct
11 Correct 5 ms 2772 KB Output is correct
12 Correct 4 ms 2772 KB Output is correct
13 Correct 10 ms 3028 KB Output is correct
14 Correct 10 ms 3156 KB Output is correct
15 Correct 7 ms 2900 KB Output is correct
16 Correct 8 ms 3028 KB Output is correct
17 Correct 8 ms 2956 KB Output is correct
18 Correct 6 ms 2900 KB Output is correct
19 Correct 8 ms 2900 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 528 ms 18548 KB Output is correct
2 Correct 523 ms 20940 KB Output is correct
3 Correct 405 ms 14388 KB Output is correct
4 Correct 513 ms 18648 KB Output is correct
5 Correct 536 ms 19644 KB Output is correct
6 Correct 540 ms 18884 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 2 ms 2644 KB Output is correct
3 Correct 2 ms 2644 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 2 ms 2644 KB Output is correct
7 Correct 2 ms 2644 KB Output is correct
8 Correct 4 ms 2864 KB Output is correct
9 Correct 4 ms 2892 KB Output is correct
10 Correct 4 ms 2808 KB Output is correct
11 Correct 5 ms 2772 KB Output is correct
12 Correct 4 ms 2772 KB Output is correct
13 Correct 10 ms 3028 KB Output is correct
14 Correct 10 ms 3156 KB Output is correct
15 Correct 7 ms 2900 KB Output is correct
16 Correct 8 ms 3028 KB Output is correct
17 Correct 8 ms 2956 KB Output is correct
18 Correct 6 ms 2900 KB Output is correct
19 Correct 8 ms 2900 KB Output is correct
20 Correct 528 ms 18548 KB Output is correct
21 Correct 523 ms 20940 KB Output is correct
22 Correct 405 ms 14388 KB Output is correct
23 Correct 513 ms 18648 KB Output is correct
24 Correct 536 ms 19644 KB Output is correct
25 Correct 540 ms 18884 KB Output is correct
26 Correct 552 ms 19020 KB Output is correct
27 Correct 508 ms 20824 KB Output is correct
28 Correct 537 ms 21512 KB Output is correct
29 Correct 413 ms 14520 KB Output is correct
30 Incorrect 567 ms 18976 KB Output isn't correct
31 Halted 0 ms 0 KB -