Submission #68101

# Submission time Handle Problem Language Result Execution time Memory
68101 2018-08-15T22:49:01 Z duality JOIRIS (JOI16_joiris) C++11
30 / 100
3 ms 636 KB
#include <bits/stdc++.h>
using namespace std;
#define mp make_pair
#define pb push_back
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef vector<pii> vpii;

int A[50];
vpii sol;
int norm(int N,int K) {
    int i;
    while (1) {
        for (i = 0; i < N; i++) {
            if (A[i] >= K) break;
        }
        if (i < N) {
            int m = 99;
            for (i = 0; i < N; i++) {
                if (A[i] == 0) {
                    sol.pb(mp(1,i+1));
                    A[i] += K;
                }
                m = min(m,A[i]);
            }
            for (i = 0; i < N; i++) A[i] -= m;
        }
        else break;
    }
    return 0;
}
int diff[60];
int main() {
    int i;
    int N,K;
    scanf("%d %d",&N,&K);
    for (i = 0; i < N; i++) scanf("%d",&A[i]);

    if (K == 2) {
        if ((N & 1) == 0) {
            int s = 0;
            for (i = 0; i < N; i++) s += A[i];
            if (s & 1) {
                printf("-1\n");
                return 0;
            }
            while (1) {
                for (i = 0; i < N; i++) {
                    if (A[i] >= 2) break;
                }
                if (i < N) {
                    int m = 99;
                    for (i = 0; i < N; i++) {
                        if (A[i] == 0) {
                            sol.pb(mp(1,i+1));
                            A[i] += 2;
                        }
                        m = min(m,A[i]);
                    }
                    for (i = 0; i < N; i++) A[i] -= m;
                }
                else break;
            }
            while (1) {
                vi v;
                for (i = 0; i < N; i++) {
                    if (A[i] > 0) v.pb(i);
                }
                if (v.empty()) break;
                for (i = 1; i < v.size(); i++) {
                    if (((v[i]-v[i-1]) & 1) == 1) break;
                }
                if (i >= v.size()) {
                    int x = v[0]/2;
                    sol.pb(mp(1,2*x+1));
                    sol.pb(mp(1,2*x+2));
                    for (i = 0; i < N/2; i++) {
                        if (i != x) {
                            sol.pb(mp(2,2*i+1));
                            if (!A[2*i] && !A[2*i+1]) {
                                sol.pb(mp(2,2*i+1));
                                A[2*i] = A[2*i+1] = 1;
                            }
                        }
                    }
                    A[2*x] ^= 1,A[2*x+1] ^= 1;
                    for (i = 0; i < N; i++) {
                        if ((i != 2*x) && (i != 2*x+1)) {
                            if (!A[i]) sol.pb(mp(1,i+1));
                        }
                    }
                    for (i = 0; i < N; i++) {
                        if ((i != v[0]) && A[i]) sol.pb(mp(1,i+1));
                    }
                }
                else {
                    int l = v[i-1],r = v[i];
                    A[l]--,A[r]--;
                    for (i = 0; i < N; i++) {
                        if ((i >= l) && (i <= r)) {
                            if ((i < r) && ((i-l) & 1)) sol.pb(mp(2,i+1));
                        }
                        else sol.pb(mp(1,i+1));
                    }
                    for (i = l; i <= r; i += 2) sol.pb(mp(2,i+1));
                }
            }
        }
        else {
            while (1) {
                for (i = 0; i < N; i++) {
                    if (A[i] >= 2) break;
                }
                if (i < N) {
                    int m = 99;
                    for (i = 0; i < N; i++) {
                        if (A[i] == 0) {
                            sol.pb(mp(1,i+1));
                            A[i] += 2;
                        }
                        m = min(m,A[i]);
                    }
                    for (i = 0; i < N; i++) A[i] -= m;
                }
                else break;
            }
            while (1) {
                for (i = 0; i < N-1; i += 2) {
                    if (A[i] != A[i+1]) break;
                }
                if (i >= N-1) {
                    for (i = 0; i < N-1; i += 2) {
                        if (A[i] == 0) sol.pb(mp(2,i+1));
                    }
                    if (A[N-1] == 0) {
                        sol.pb(mp(1,N));
                        for (i = 0; i < N-1; i += 2) sol.pb(mp(2,i+1));
                    }
                    break;
                }
                else {
                    if (A[i] == 1) {
                        for (i = 0; i < N; i++) {
                            if (A[i] == 0) sol.pb(mp(1,i+1));
                            A[i] ^= 1;
                        }
                    }
                    else {
                        int x = i;
                        for (i = 0; i < x; i += 2) {
                            sol.pb(mp(2,i+1));
                            if ((A[i] == 0) && (A[i+1] == 0)) {
                                sol.pb(mp(2,i+1));
                                A[i] = A[i+1] = 1;
                            }
                        }
                        for (i = x+1; i < N; i += 2) {
                            sol.pb(mp(2,i+1));
                            if ((A[i] == 0) && (A[i+1] == 0)) {
                                sol.pb(mp(2,i+1));
                                A[i] = A[i+1] = 1;
                            }
                        }
                        sol.pb(mp(1,x+1));
                        A[x] = 1;
                    }
                }
            }
        }
    }
    else {
        int j;
        norm(N,K);
        for (i = 0; i <= N; i++) {
            if (i == 0) diff[i] = -A[i];
            else if (i == N) diff[i] = A[N-1];
            else diff[i] = A[i-1]-A[i];
            //cout<<diff[i]<<endl;
        }
        for (i = 0; i < K; i++) {
            int s = 0;
            for (j = i; j <= N; j += K) s += diff[j];
            s %= K;
            if (s != 0) break;
        }
        if (i < K) {
            printf("-1\n");
            return 0;
        }
        for (i = 0; i <= N-K; i++) {
            int m = 0;
            for (j = i; j < i+K; j++) m = max(m,A[j]);
            int x = (diff[i]+K) % K;
            for (j = 0; j < x; j++) sol.pb(mp(2,i+1));
            m += x;
            for (j = 0; j < N; j++) {
                if ((j < i) || (j >= i+K)) {
                    while (A[j] < m) sol.pb(mp(1,j+1)),A[j] += K;
                }
                else A[j] += x;
            }
            m = 1e9;
            for (j = 0; j < N; j++) m = min(m,A[j]);
            for (j = 0; j < N; j++) A[j] -= m;
            norm(N,K);
            //for(j=0;j<N;j++)cout<<A[j]<<" ";
            //cout<<endl;
        }
    }

    printf("%d\n",sol.size());
    for (i = 0; i < sol.size(); i++) printf("%d %d\n",sol[i].first,sol[i].second);

    return 0;
}

Compilation message

joiris.cpp: In function 'int main()':
joiris.cpp:70:31: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 for (i = 1; i < v.size(); i++) {
                             ~~^~~~~~~~~~
joiris.cpp:73:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
                 if (i >= v.size()) {
                     ~~^~~~~~~~~~~
joiris.cpp:211:29: warning: format '%d' expects argument of type 'int', but argument 2 has type 'std::vector<std::pair<int, int> >::size_type {aka long unsigned int}' [-Wformat=]
     printf("%d\n",sol.size());
                   ~~~~~~~~~~^
joiris.cpp:212:19: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
     for (i = 0; i < sol.size(); i++) printf("%d %d\n",sol[i].first,sol[i].second);
                 ~~^~~~~~~~~~~~
joiris.cpp:36:10: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     scanf("%d %d",&N,&K);
     ~~~~~^~~~~~~~~~~~~~~
joiris.cpp:37:34: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
     for (i = 0; i < N; i++) scanf("%d",&A[i]);
                             ~~~~~^~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 248 KB Output is correct
2 Correct 2 ms 356 KB Output is correct
3 Correct 3 ms 392 KB Output is correct
4 Correct 2 ms 448 KB Output is correct
5 Correct 2 ms 472 KB Output is correct
6 Correct 2 ms 472 KB Output is correct
7 Correct 3 ms 500 KB Output is correct
8 Correct 2 ms 548 KB Output is correct
9 Correct 2 ms 600 KB Output is correct
10 Correct 3 ms 600 KB Output is correct
11 Correct 2 ms 600 KB Output is correct
12 Correct 2 ms 600 KB Output is correct
13 Correct 3 ms 600 KB Output is correct
14 Correct 2 ms 600 KB Output is correct
15 Correct 2 ms 624 KB Output is correct
16 Correct 3 ms 636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 636 KB Output is correct
2 Correct 2 ms 636 KB Output is correct
3 Correct 3 ms 636 KB Output is correct
4 Correct 2 ms 636 KB Output is correct
5 Correct 3 ms 636 KB Output is correct
6 Correct 3 ms 636 KB Output is correct
7 Correct 2 ms 636 KB Output is correct
8 Correct 2 ms 636 KB Output is correct
9 Correct 2 ms 636 KB Output is correct
10 Correct 3 ms 636 KB Output is correct
11 Correct 2 ms 636 KB Output is correct
12 Correct 3 ms 636 KB Output is correct
13 Correct 2 ms 636 KB Output is correct
14 Correct 2 ms 636 KB Output is correct
15 Correct 2 ms 636 KB Output is correct
16 Correct 2 ms 636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 248 KB Output is correct
2 Correct 2 ms 356 KB Output is correct
3 Correct 3 ms 392 KB Output is correct
4 Correct 2 ms 448 KB Output is correct
5 Correct 2 ms 472 KB Output is correct
6 Correct 2 ms 472 KB Output is correct
7 Correct 3 ms 500 KB Output is correct
8 Correct 2 ms 548 KB Output is correct
9 Correct 2 ms 600 KB Output is correct
10 Correct 3 ms 600 KB Output is correct
11 Correct 2 ms 600 KB Output is correct
12 Correct 2 ms 600 KB Output is correct
13 Correct 3 ms 600 KB Output is correct
14 Correct 2 ms 600 KB Output is correct
15 Correct 2 ms 624 KB Output is correct
16 Correct 3 ms 636 KB Output is correct
17 Correct 2 ms 636 KB Output is correct
18 Correct 2 ms 636 KB Output is correct
19 Incorrect 2 ms 636 KB Output isn't correct
20 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 248 KB Output is correct
2 Correct 2 ms 356 KB Output is correct
3 Correct 3 ms 392 KB Output is correct
4 Correct 2 ms 448 KB Output is correct
5 Correct 2 ms 472 KB Output is correct
6 Correct 2 ms 472 KB Output is correct
7 Correct 3 ms 500 KB Output is correct
8 Correct 2 ms 548 KB Output is correct
9 Correct 2 ms 600 KB Output is correct
10 Correct 3 ms 600 KB Output is correct
11 Correct 2 ms 600 KB Output is correct
12 Correct 2 ms 600 KB Output is correct
13 Correct 3 ms 600 KB Output is correct
14 Correct 2 ms 600 KB Output is correct
15 Correct 2 ms 624 KB Output is correct
16 Correct 3 ms 636 KB Output is correct
17 Correct 2 ms 636 KB Output is correct
18 Correct 2 ms 636 KB Output is correct
19 Correct 3 ms 636 KB Output is correct
20 Correct 2 ms 636 KB Output is correct
21 Correct 3 ms 636 KB Output is correct
22 Correct 3 ms 636 KB Output is correct
23 Correct 2 ms 636 KB Output is correct
24 Correct 2 ms 636 KB Output is correct
25 Correct 2 ms 636 KB Output is correct
26 Correct 3 ms 636 KB Output is correct
27 Correct 2 ms 636 KB Output is correct
28 Correct 3 ms 636 KB Output is correct
29 Correct 2 ms 636 KB Output is correct
30 Correct 2 ms 636 KB Output is correct
31 Correct 2 ms 636 KB Output is correct
32 Correct 2 ms 636 KB Output is correct
33 Correct 2 ms 636 KB Output is correct
34 Correct 2 ms 636 KB Output is correct
35 Incorrect 2 ms 636 KB Output isn't correct
36 Halted 0 ms 0 KB -