#include "bubblesort2.h"
// #pragma GCC optimize ("Ofast")
// #pragma GCC target ("avx2")
#include <bits/stdc++.h>
using namespace std;
#ifdef LOCAL
#include <debug.h>
#include "grader.cpp"
#else
#define debug(...)
#endif
#define ft front
#define bk back
#define st first
#define nd second
#define ins insert
#define ers erase
#define pb push_back
#define pf push_front
#define _pb pop_back
#define _pf pop_front
#define lb lower_bound
#define ub upper_bound
#define mtp make_tuple
#define bg begin
#define ed end
#define all(x) (x).bg(), (x).ed()
#define sz(x) (int)(x).size()
// #define int long long
typedef long long ll; typedef unsigned long long ull;
typedef double db; typedef long double ldb;
typedef pair<int, int> pi; typedef pair<ll, ll> pll;
typedef vector<int> vi; typedef vector<ll> vll; typedef vector<pi> vpi; typedef vector<pll> vpll;
typedef string str;
#define FOR(i, l, r) for (int i = (l); i <= (r); ++i)
#define FOS(i, r, l) for (int i = (r); i >= (l); --i)
#define FRN(i, n) for (int i = 0; i < (n); ++i)
#define FSN(i, n) for (int i = (n) - 1; i >= 0; --i)
#define EACH(i, x) for (auto &i : (x))
#define WHILE while
template<typename T> T gcd(T a, T b) { T d2 = (a | b) & -(a | b); a /= d2; b /= d2; WHILE(b) { a = a % b; swap(a, b); } return a * d2; }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
void _assert(bool statement) { if (statement) return; cerr << "\n>> Assertion failed!\n"; exit(0); }
void _assert(bool statement, const str &message) { if (statement) return; cerr << "\n>> Assertion failed: " << message << '\n'; exit(0); }
void _error(const str &message) { cerr << "\n>> Error: " << message << '\n'; exit(0); }
#define file "TEST"
mt19937 rd(chrono::steady_clock::now().time_since_epoch().count());
ll rand(ll l, ll r) { return uniform_int_distribution<ll>(l, r)(rd); }
/*
----------------------------------------------------------------
END OF TEMPLATE
----------------------------------------------------------------
Tran The Bao - ghostwriter
Training for VOI23 gold medal
----------------------------------------------------------------
GOAT
----------------------------------------------------------------
*/
namespace subtask12 {
const int MAXN = 16000;
int N, Q;
vi A, X, V, d[MAXN];
bool checkCondition(vi A, vi X, vi V) {
subtask12::A = A;
subtask12::X = X;
subtask12::V = V;
return sz(A) <= 8000 && sz(X) <= 8000;
}
void compress() {
vi A1;
EACH(i, A) A1.pb(i);
EACH(i, V) A1.pb(i);
sort(all(A1));
EACH(i, A) i = lb(all(A1), i) - A1.bg();
EACH(i, V) i = lb(all(A1), i) - A1.bg();
}
int solve() {
int rs = 0, maxx = -1, num = N;
FRN(i, N) d[A[i]].pb(i);
FRN(i, MAXN) {
if (d[i].empty()) continue;
EACH(j, d[i]) {
rs = max(rs, num - N + max(maxx, j));
--num;
maxx = max(maxx, j + 1);
}
d[i].clear();
}
return rs;
}
vi countScans() {
N = sz(A);
Q = sz(X);
compress();
vi ANS(Q);
FRN(j, Q) {
A[X[j]] = V[j];
ANS[j] = solve();
}
return ANS;
}
}
namespace subtask34 {
/*
This problem is tough, JOI is tough :(. I've had some beautiful formular to solve subtask1 and subtask2 but not the problem.
The idea is quite simple though: Consider any element i, let S[i] be the number of element to the left of i and bigger than a[i].
Answer must be at least S[i] for all i and yes Max(S[i]) for 1 <= i <= n is the answer we need to get in a query because after S[i]
iteration, any element that occure before i must not exceed a[i]. Now we tried to transform the formular into something more elegant.
Consider i that has max S[i], if there'is any element j > i and a[j] <= i then we consider j instead of i because S[j] will be at least S[i]
(pretty obvious because every element bigger than a[i] is bigger than a[j] and j is on the right of i) and do this until you can't shift it
no more. If we consider i - cnt[i] instead of S[i] (cnt[i] is the number of element <= a[i]) then at the position i, S[i] = i - cnt[i] = ans as we
shift it as far as we could. Every other position has i - cnt[i] <= S[i] (as we can minus some extra element). So max(i - cnt[i]) = max(S[i]) as
there is at least one position that has i - cnt[i] = max(S[i]) and every other position has i - cnt[i] <= S[i]. We have transform the problem
into a elegant and well known lazy propagate query?
*/
const int oo = 1e9 + 5;
const int MAXN = 1e6 + 5;
const int T = 4e6 + 5;
int N, Q, tr[T], la[T];
vpi A1;
void lazy(int i) {
if (!la[i]) return;
tr[i] += la[i];
if (i * 2 + 1 < T) {
la[i * 2] += la[i];
la[i * 2 + 1] += la[i];
}
la[i] = 0;
}
void upd(int i, int l, int r, int ql, int qr, int v) {
lazy(i);
if (r < ql || l > qr) return;
if (ql <= l && r <= qr) {
la[i] += v;
lazy(i);
return;
}
int mid = l + (r - l) / 2;
upd(i * 2, l, mid, ql, qr, v);
upd(i * 2 + 1, mid + 1, r, ql, qr, v);
tr[i] = max(tr[i * 2], tr[i * 2 + 1]);
}
void upd(int l, int r, int v) { upd(1, 0, MAXN - 1, l, r, v); }
int get(int i, int l, int r, int ql, int qr) {
lazy(i);
if (r < ql || l > qr) return -oo;
if (ql <= l && r <= qr) return tr[i];
int mid = l + (r - l) / 2;
return max(get(i * 2, l, mid, ql, qr), get(i * 2 + 1, mid + 1, r, ql, qr));
}
int get(int l, int r) { return get(1, 0, MAXN - 1, l, r); }
int getp(pi v) { return lb(all(A1), v) - A1.bg(); }
vi countScans(vi A, vi X, vi V) {
N = sz(A);
Q = sz(X);
FRN(i, N) A1.pb({A[i], i});
FRN(i, Q) A1.pb({V[i], X[i]});
sort(all(A1));
FRN(i, N) {
int cur = getp({A[i], i});
upd(cur, MAXN - 1, -1);
upd(cur, cur, i + 1);
}
vi ANS(Q);
FRN(i, Q) {
int pos = X[i], v = V[i];
int cur = getp({A[pos], pos}), nxt = getp({v, pos});
upd(cur, cur, -pos - 1);
upd(cur, MAXN - 1, 1);
upd(nxt, MAXN - 1, -1);
upd(nxt, nxt, pos + 1);
ANS[i] = get(0, MAXN - 1);
A[pos] = v;
}
return ANS;
}
}
std::vector<int> countScans(std::vector<int> A,std::vector<int> X,std::vector<int> V){
if (subtask12::checkCondition(A, X, V)) return subtask12::countScans();
return subtask34::countScans(A, X, V);
}
/*
4 2
1 2 3 4
0 3
2 1
4 1
1 2 3 4
0 3
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
12 ms |
724 KB |
Output is correct |
2 |
Correct |
23 ms |
724 KB |
Output is correct |
3 |
Correct |
90 ms |
884 KB |
Output is correct |
4 |
Correct |
93 ms |
888 KB |
Output is correct |
5 |
Correct |
87 ms |
852 KB |
Output is correct |
6 |
Correct |
72 ms |
896 KB |
Output is correct |
7 |
Correct |
78 ms |
884 KB |
Output is correct |
8 |
Correct |
83 ms |
908 KB |
Output is correct |
9 |
Correct |
90 ms |
1000 KB |
Output is correct |
10 |
Correct |
78 ms |
996 KB |
Output is correct |
11 |
Correct |
76 ms |
872 KB |
Output is correct |
12 |
Correct |
81 ms |
872 KB |
Output is correct |
13 |
Correct |
75 ms |
980 KB |
Output is correct |
14 |
Correct |
76 ms |
872 KB |
Output is correct |
15 |
Correct |
80 ms |
980 KB |
Output is correct |
16 |
Correct |
74 ms |
852 KB |
Output is correct |
17 |
Correct |
78 ms |
988 KB |
Output is correct |
18 |
Correct |
90 ms |
864 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
12 ms |
724 KB |
Output is correct |
2 |
Correct |
23 ms |
724 KB |
Output is correct |
3 |
Correct |
90 ms |
884 KB |
Output is correct |
4 |
Correct |
93 ms |
888 KB |
Output is correct |
5 |
Correct |
87 ms |
852 KB |
Output is correct |
6 |
Correct |
72 ms |
896 KB |
Output is correct |
7 |
Correct |
78 ms |
884 KB |
Output is correct |
8 |
Correct |
83 ms |
908 KB |
Output is correct |
9 |
Correct |
90 ms |
1000 KB |
Output is correct |
10 |
Correct |
78 ms |
996 KB |
Output is correct |
11 |
Correct |
76 ms |
872 KB |
Output is correct |
12 |
Correct |
81 ms |
872 KB |
Output is correct |
13 |
Correct |
75 ms |
980 KB |
Output is correct |
14 |
Correct |
76 ms |
872 KB |
Output is correct |
15 |
Correct |
80 ms |
980 KB |
Output is correct |
16 |
Correct |
74 ms |
852 KB |
Output is correct |
17 |
Correct |
78 ms |
988 KB |
Output is correct |
18 |
Correct |
90 ms |
864 KB |
Output is correct |
19 |
Correct |
1097 ms |
1524 KB |
Output is correct |
20 |
Correct |
1461 ms |
1684 KB |
Output is correct |
21 |
Correct |
1142 ms |
1732 KB |
Output is correct |
22 |
Correct |
1377 ms |
1696 KB |
Output is correct |
23 |
Correct |
1102 ms |
1556 KB |
Output is correct |
24 |
Correct |
1119 ms |
1536 KB |
Output is correct |
25 |
Correct |
1097 ms |
1624 KB |
Output is correct |
26 |
Correct |
1112 ms |
1760 KB |
Output is correct |
27 |
Correct |
1073 ms |
1664 KB |
Output is correct |
28 |
Correct |
1072 ms |
1612 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
29 ms |
2488 KB |
Output is correct |
2 |
Correct |
89 ms |
4652 KB |
Output is correct |
3 |
Correct |
159 ms |
7348 KB |
Output is correct |
4 |
Correct |
142 ms |
7264 KB |
Output is correct |
5 |
Correct |
137 ms |
7224 KB |
Output is correct |
6 |
Correct |
142 ms |
7364 KB |
Output is correct |
7 |
Correct |
138 ms |
7232 KB |
Output is correct |
8 |
Correct |
139 ms |
7288 KB |
Output is correct |
9 |
Correct |
135 ms |
7228 KB |
Output is correct |
10 |
Correct |
126 ms |
7312 KB |
Output is correct |
11 |
Correct |
120 ms |
7268 KB |
Output is correct |
12 |
Correct |
128 ms |
7312 KB |
Output is correct |
13 |
Correct |
129 ms |
7300 KB |
Output is correct |
14 |
Correct |
123 ms |
7304 KB |
Output is correct |
15 |
Correct |
118 ms |
7292 KB |
Output is correct |
16 |
Correct |
125 ms |
7204 KB |
Output is correct |
17 |
Correct |
118 ms |
7196 KB |
Output is correct |
18 |
Correct |
122 ms |
7288 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
12 ms |
724 KB |
Output is correct |
2 |
Correct |
23 ms |
724 KB |
Output is correct |
3 |
Correct |
90 ms |
884 KB |
Output is correct |
4 |
Correct |
93 ms |
888 KB |
Output is correct |
5 |
Correct |
87 ms |
852 KB |
Output is correct |
6 |
Correct |
72 ms |
896 KB |
Output is correct |
7 |
Correct |
78 ms |
884 KB |
Output is correct |
8 |
Correct |
83 ms |
908 KB |
Output is correct |
9 |
Correct |
90 ms |
1000 KB |
Output is correct |
10 |
Correct |
78 ms |
996 KB |
Output is correct |
11 |
Correct |
76 ms |
872 KB |
Output is correct |
12 |
Correct |
81 ms |
872 KB |
Output is correct |
13 |
Correct |
75 ms |
980 KB |
Output is correct |
14 |
Correct |
76 ms |
872 KB |
Output is correct |
15 |
Correct |
80 ms |
980 KB |
Output is correct |
16 |
Correct |
74 ms |
852 KB |
Output is correct |
17 |
Correct |
78 ms |
988 KB |
Output is correct |
18 |
Correct |
90 ms |
864 KB |
Output is correct |
19 |
Correct |
1097 ms |
1524 KB |
Output is correct |
20 |
Correct |
1461 ms |
1684 KB |
Output is correct |
21 |
Correct |
1142 ms |
1732 KB |
Output is correct |
22 |
Correct |
1377 ms |
1696 KB |
Output is correct |
23 |
Correct |
1102 ms |
1556 KB |
Output is correct |
24 |
Correct |
1119 ms |
1536 KB |
Output is correct |
25 |
Correct |
1097 ms |
1624 KB |
Output is correct |
26 |
Correct |
1112 ms |
1760 KB |
Output is correct |
27 |
Correct |
1073 ms |
1664 KB |
Output is correct |
28 |
Correct |
1072 ms |
1612 KB |
Output is correct |
29 |
Correct |
29 ms |
2488 KB |
Output is correct |
30 |
Correct |
89 ms |
4652 KB |
Output is correct |
31 |
Correct |
159 ms |
7348 KB |
Output is correct |
32 |
Correct |
142 ms |
7264 KB |
Output is correct |
33 |
Correct |
137 ms |
7224 KB |
Output is correct |
34 |
Correct |
142 ms |
7364 KB |
Output is correct |
35 |
Correct |
138 ms |
7232 KB |
Output is correct |
36 |
Correct |
139 ms |
7288 KB |
Output is correct |
37 |
Correct |
135 ms |
7228 KB |
Output is correct |
38 |
Correct |
126 ms |
7312 KB |
Output is correct |
39 |
Correct |
120 ms |
7268 KB |
Output is correct |
40 |
Correct |
128 ms |
7312 KB |
Output is correct |
41 |
Correct |
129 ms |
7300 KB |
Output is correct |
42 |
Correct |
123 ms |
7304 KB |
Output is correct |
43 |
Correct |
118 ms |
7292 KB |
Output is correct |
44 |
Correct |
125 ms |
7204 KB |
Output is correct |
45 |
Correct |
118 ms |
7196 KB |
Output is correct |
46 |
Correct |
122 ms |
7288 KB |
Output is correct |
47 |
Correct |
503 ms |
22020 KB |
Output is correct |
48 |
Correct |
1892 ms |
65996 KB |
Output is correct |
49 |
Correct |
2089 ms |
70900 KB |
Output is correct |
50 |
Correct |
2084 ms |
70856 KB |
Output is correct |
51 |
Correct |
2068 ms |
70856 KB |
Output is correct |
52 |
Correct |
2068 ms |
70808 KB |
Output is correct |
53 |
Correct |
2065 ms |
70856 KB |
Output is correct |
54 |
Correct |
1889 ms |
71096 KB |
Output is correct |
55 |
Correct |
2001 ms |
70992 KB |
Output is correct |
56 |
Correct |
1893 ms |
71064 KB |
Output is correct |
57 |
Correct |
1980 ms |
71020 KB |
Output is correct |
58 |
Correct |
1888 ms |
70940 KB |
Output is correct |
59 |
Correct |
1734 ms |
69696 KB |
Output is correct |
60 |
Correct |
1760 ms |
69760 KB |
Output is correct |
61 |
Correct |
1725 ms |
69640 KB |
Output is correct |
62 |
Correct |
1728 ms |
69480 KB |
Output is correct |
63 |
Correct |
1672 ms |
69480 KB |
Output is correct |
64 |
Correct |
1691 ms |
69448 KB |
Output is correct |
65 |
Correct |
1586 ms |
69340 KB |
Output is correct |
66 |
Correct |
1557 ms |
69344 KB |
Output is correct |
67 |
Correct |
1584 ms |
69344 KB |
Output is correct |