Submission #66874

# Submission time Handle Problem Language Result Execution time Memory
66874 2018-08-12T17:06:44 Z Benq Sailing Race (CEOI12_race) C++14
75 / 100
3000 ms 4832 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
 
using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
 
bool ok[501][501];
int N,k;
 
int nor(int x) { x = (x%N+N)%N; if (x == 0) x += N; return x; }
template<class T> void MX(T& a, T b) { a = max(a,b); }

int alt[2][501][501];

pi solve0() {
    FOR(len,2,N) FOR(i,1,N+1) {
        int en = nor(i+len);
        FOR(j,1,len) {
            int m = nor(i+j);
            int ex = max(alt[0][m][en],alt[1][i][m])+1;
            if (ok[i][m]) MX(alt[0][i][en],ex);
            if (ok[en][m]) MX(alt[1][i][en],ex);
        }
    }
    
    pi ret = {0,0};
    FOR(i,1,N+1) FOR(j,1,N+1) if (ok[i][j]) 
        MX(ret,{max(alt[1][i][j],alt[0][j][i])+1,i});
    return ret;
}

int no[2][501][501];

pi ret = {0,0};
    
void test1(int len, int i) {
    pi yes = {-MOD,-MOD};
    int en = nor(i+len);
    int existsEdge = 0;
    for (int j = len-1; j >= 0; --j) {
        int m = nor(i+j);
        if (ok[m][en]) {
            MX(no[0][i][en],no[0][i][m]+1);
            if (existsEdge) MX(yes,{no[0][i][en],existsEdge});
        }
        if (ok[m][i]) existsEdge = m;
    }
    MX(ret,{yes.f+alt[0][en][i]+1,yes.s});
}

void test2(int len, int i) {
    int en = nor(i+len);
    no[0][i][en] = -MOD;
    for (int j = 0; j < len; ++j) {
        int m = nor(i+j);
        if (j && ok[m][i]) MX(ret,{no[0][i][en]+alt[1][m][en]+1,m});
        if (ok[m][en]) MX(no[0][i][en],no[0][i][m]+1);
    }
}

void test3(int len, int i) {
    pi yes = {-MOD,-MOD};
    int st = nor(i-len);
    int existsEdge = 0;
    for (int j = len-1; j >= 0; --j) {
        int m = nor(i-j);
        if (ok[m][st]) {
            MX(no[1][st][i],no[1][m][i]+1);
            if (existsEdge) MX(yes,{no[1][st][i],existsEdge});
        }
        if (ok[m][i]) existsEdge = m;
    }
    // cout << "OH " << yes.f+alt[1][i][st]+1 << " " << yes.f << " " << yes.s << " " << i << " " << st << "\n";
    MX(ret,{yes.f+alt[1][i][st]+1,yes.s});
}

void test4(int len, int i) {
    int st = nor(i-len);
    no[1][st][i] = -MOD;
    for (int j = 0; j < len; ++j) {
        int m = nor(i-j);
        if (j && ok[m][i]) MX(ret,{no[1][st][i]+alt[0][st][m]+1,m});
        if (ok[m][st]) MX(no[1][st][i],no[1][m][i]+1);
    }
}

pi solve1() {
    F0R(i,2) FOR(j,1,N+1) FOR(k,1,N+1) {
        if (j != k) no[i][j][k] = -MOD;
        else no[i][j][k] = 0;
    }
    FOR(len,1,N) FOR(i,1,N+1) {
        test1(len,i);
        test2(len,i);
        test3(len,i);
        test4(len,i);
    }
    
    return ret;
}
 
int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> k;
    FOR(i,1,N+1) {
        int x; 
        while (cin >> x) {
            if (x == 0) break;
            ok[i][x] = 1;
        }
    }
    pi t = solve0();
    if (k == 1) MX(t,solve1());
    cout << t.f << "\n" << t.s;
}
 
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 3 ms 488 KB Output is correct
3 Correct 3 ms 668 KB Output is correct
4 Correct 6 ms 796 KB Output is correct
5 Correct 5 ms 796 KB Output is correct
6 Correct 18 ms 1128 KB Output is correct
7 Correct 9 ms 1128 KB Output is correct
8 Correct 28 ms 1184 KB Output is correct
9 Correct 16 ms 1184 KB Output is correct
10 Correct 12 ms 1184 KB Output is correct
11 Correct 21 ms 1184 KB Output is correct
12 Correct 423 ms 2352 KB Output is correct
13 Correct 1077 ms 3076 KB Output is correct
14 Correct 580 ms 3076 KB Output is correct
15 Execution timed out 3051 ms 4768 KB Time limit exceeded
16 Execution timed out 3060 ms 4768 KB Time limit exceeded
17 Execution timed out 3042 ms 4768 KB Time limit exceeded
18 Correct 1071 ms 4768 KB Output is correct
19 Execution timed out 3060 ms 4784 KB Time limit exceeded
20 Execution timed out 3048 ms 4832 KB Time limit exceeded