Submission #652462

# Submission time Handle Problem Language Result Execution time Memory
652462 2022-10-22T17:10:46 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 65604 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	vvll sm(2, vll(N, 0));
	for(int j = 0; j < M; j++)
		if(X[j] < 2)
			sm[X[j]][Y[j]] += W[j];
 
	if(N == 2)
	{
		return max(sm[0][0] + sm[0][1], sm[1][0] + sm[1][1]);
	}

 
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 2);
		Y[j]++;
	}
	xmx = min(xmx, N);
 
	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	ll* fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = new ll[1];
	fishpref[0][0] = 0;
 
	// vvll inc(1+N), dec(1+N);
	ll* inc[1+N];
	ll* dec[1+N];
	ll* incpref[1+N];
	ll* decpref[1+N]; //pref inc dec mx
	inc[0] = new ll[1];
	inc[0][0] = 0;

	dec[0] = new ll[1];
	dec[0][0] = 0;
 
 	ll res = 0;
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = new ll[sz(fish[r-1])];
		decpref[r-1] = new ll[sz(fish[r-1])];

		incpref[r-1][0] = decpref[r-1][0] = 0;

		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		// inc[r] = dec[r] = vll(sz(fish[r]), 0);
		inc[r] = new ll[sz(fish[r])];
		dec[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
			inc[r][i] = dec[r][i] = 0;
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;

			ll oldqwt = qwt;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				assert(Bcatch == qwt);
				assert(Bk == qi);
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
	
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}

		for(int i = 0; i < sz(fish[r]); i++)
			selfmax(res, max(inc[r][i], dec[r][i]));
	}
 
	return res;
}

Compilation message

fish.cpp: In function 'll max_weights(int, int, vi, vi, vi)':
fish.cpp:166:7: warning: unused variable 'oldqwt' [-Wunused-variable]
  166 |    ll oldqwt = qwt;
      |       ^~~~~~
# Verdict Execution time Memory Grader output
1 Correct 55 ms 24336 KB Output is correct
2 Correct 65 ms 27664 KB Output is correct
3 Correct 8 ms 15940 KB Output is correct
4 Correct 9 ms 15856 KB Output is correct
5 Correct 206 ms 64060 KB Output is correct
6 Correct 263 ms 65604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1099 ms 29040 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 9 ms 15940 KB Output is correct
2 Correct 48 ms 36280 KB Output is correct
3 Correct 64 ms 34704 KB Output is correct
4 Correct 58 ms 35412 KB Output is correct
5 Correct 87 ms 39356 KB Output is correct
6 Correct 90 ms 39448 KB Output is correct
7 Correct 87 ms 39416 KB Output is correct
8 Correct 87 ms 39332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 5 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 5 ms 6088 KB Output is correct
11 Correct 5 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 4 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 5 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 5 ms 6088 KB Output is correct
11 Correct 5 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 4 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 24 ms 10060 KB Output is correct
18 Correct 24 ms 10696 KB Output is correct
19 Correct 23 ms 10536 KB Output is correct
20 Correct 27 ms 10540 KB Output is correct
21 Correct 30 ms 10480 KB Output is correct
22 Correct 47 ms 15176 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 16 ms 8704 KB Output is correct
25 Correct 5 ms 5968 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 5 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 5 ms 6088 KB Output is correct
11 Correct 5 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 4 ms 5716 KB Output is correct
14 Correct 4 ms 5844 KB Output is correct
15 Correct 3 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 24 ms 10060 KB Output is correct
18 Correct 24 ms 10696 KB Output is correct
19 Correct 23 ms 10536 KB Output is correct
20 Correct 27 ms 10540 KB Output is correct
21 Correct 30 ms 10480 KB Output is correct
22 Correct 47 ms 15176 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 16 ms 8704 KB Output is correct
25 Correct 5 ms 5968 KB Output is correct
26 Correct 7 ms 6612 KB Output is correct
27 Correct 6 ms 6868 KB Output is correct
28 Correct 132 ms 28280 KB Output is correct
29 Correct 339 ms 34992 KB Output is correct
30 Correct 150 ms 34704 KB Output is correct
31 Correct 144 ms 34636 KB Output is correct
32 Correct 167 ms 37460 KB Output is correct
33 Correct 148 ms 34636 KB Output is correct
34 Correct 153 ms 34756 KB Output is correct
35 Correct 57 ms 17712 KB Output is correct
36 Correct 157 ms 35676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 9 ms 15940 KB Output is correct
2 Correct 48 ms 36280 KB Output is correct
3 Correct 64 ms 34704 KB Output is correct
4 Correct 58 ms 35412 KB Output is correct
5 Correct 87 ms 39356 KB Output is correct
6 Correct 90 ms 39448 KB Output is correct
7 Correct 87 ms 39416 KB Output is correct
8 Correct 87 ms 39332 KB Output is correct
9 Correct 98 ms 44844 KB Output is correct
10 Correct 71 ms 26288 KB Output is correct
11 Correct 158 ms 46840 KB Output is correct
12 Correct 4 ms 5716 KB Output is correct
13 Correct 4 ms 5716 KB Output is correct
14 Correct 5 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 9 ms 15940 KB Output is correct
19 Correct 9 ms 15960 KB Output is correct
20 Correct 47 ms 36228 KB Output is correct
21 Correct 50 ms 36284 KB Output is correct
22 Correct 120 ms 45380 KB Output is correct
23 Correct 153 ms 53168 KB Output is correct
24 Correct 146 ms 54464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 55 ms 24336 KB Output is correct
2 Correct 65 ms 27664 KB Output is correct
3 Correct 8 ms 15940 KB Output is correct
4 Correct 9 ms 15856 KB Output is correct
5 Correct 206 ms 64060 KB Output is correct
6 Correct 263 ms 65604 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1099 ms 29040 KB Time limit exceeded
9 Halted 0 ms 0 KB -