Submission #652461

# Submission time Handle Problem Language Result Execution time Memory
652461 2022-10-22T17:09:23 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 65596 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	vvll sm(2, vll(N, 0));
	for(int j = 0; j < M; j++)
		if(X[j] < 2)
			sm[X[j]][Y[j]] += W[j];
 
	if(N == 2)
	{
		return max(sm[0][0] + sm[0][1], sm[1][0] + sm[1][1]);
	}

 
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 2);
		Y[j]++;
	}
	xmx = min(xmx, N);
 
	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	ll* fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = new ll[1];
	fishpref[0][0] = 0;
 
	// vvll inc(1+N), dec(1+N);
	ll* inc[1+N];
	ll* dec[1+N];
	ll* incpref[1+N];
	ll* decpref[1+N]; //pref inc dec mx
	inc[0] = new ll[1];
	inc[0][0] = 0;

	dec[0] = new ll[1];
	dec[0][0] = 0;
 
 	ll res = 0;
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = new ll[sz(fish[r-1])];
		decpref[r-1] = new ll[sz(fish[r-1])];

		incpref[r-1][0] = decpref[r-1][0] = 0;

		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		// inc[r] = dec[r] = vll(sz(fish[r]), 0);
		inc[r] = new ll[sz(fish[r])];
		dec[r] = new ll[sz(fish[r])];
		for(int i = 0; i < sz(fish[r]); i++)
			inc[r][i] = dec[r][i] = 0;
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;

			ll oldqwt = qwt;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				// assert(Bcatch == qwt - oldqwt);
				assert(Bk == qi);
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
	
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}

		for(int i = 0; i < sz(fish[r]); i++)
			selfmax(res, max(inc[r][i], dec[r][i]));
	}
 
	return res;
}

Compilation message

fish.cpp: In function 'll max_weights(int, int, vi, vi, vi)':
fish.cpp:166:7: warning: unused variable 'oldqwt' [-Wunused-variable]
  166 |    ll oldqwt = qwt;
      |       ^~~~~~
# Verdict Execution time Memory Grader output
1 Correct 52 ms 24328 KB Output is correct
2 Correct 61 ms 27712 KB Output is correct
3 Correct 8 ms 15940 KB Output is correct
4 Correct 9 ms 15940 KB Output is correct
5 Correct 187 ms 64092 KB Output is correct
6 Correct 238 ms 65596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1089 ms 29168 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 8 ms 15944 KB Output is correct
2 Correct 45 ms 36264 KB Output is correct
3 Correct 61 ms 34696 KB Output is correct
4 Correct 61 ms 35328 KB Output is correct
5 Correct 85 ms 39328 KB Output is correct
6 Correct 82 ms 39380 KB Output is correct
7 Correct 89 ms 39408 KB Output is correct
8 Correct 85 ms 39452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5716 KB Output is correct
2 Correct 3 ms 5792 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 3 ms 5948 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5716 KB Output is correct
2 Correct 3 ms 5792 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 3 ms 5948 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 25 ms 10052 KB Output is correct
18 Correct 28 ms 10656 KB Output is correct
19 Correct 22 ms 10580 KB Output is correct
20 Correct 23 ms 10544 KB Output is correct
21 Correct 22 ms 10544 KB Output is correct
22 Correct 48 ms 15276 KB Output is correct
23 Correct 8 ms 6740 KB Output is correct
24 Correct 18 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 8 ms 6668 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 5716 KB Output is correct
2 Correct 3 ms 5792 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6100 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 3 ms 5948 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 25 ms 10052 KB Output is correct
18 Correct 28 ms 10656 KB Output is correct
19 Correct 22 ms 10580 KB Output is correct
20 Correct 23 ms 10544 KB Output is correct
21 Correct 22 ms 10544 KB Output is correct
22 Correct 48 ms 15276 KB Output is correct
23 Correct 8 ms 6740 KB Output is correct
24 Correct 18 ms 8660 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 8 ms 6668 KB Output is correct
27 Correct 6 ms 6868 KB Output is correct
28 Correct 132 ms 28276 KB Output is correct
29 Correct 339 ms 34900 KB Output is correct
30 Correct 145 ms 34652 KB Output is correct
31 Correct 145 ms 34648 KB Output is correct
32 Correct 162 ms 37456 KB Output is correct
33 Correct 140 ms 34844 KB Output is correct
34 Correct 142 ms 34664 KB Output is correct
35 Correct 57 ms 17612 KB Output is correct
36 Correct 159 ms 35660 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 8 ms 15944 KB Output is correct
2 Correct 45 ms 36264 KB Output is correct
3 Correct 61 ms 34696 KB Output is correct
4 Correct 61 ms 35328 KB Output is correct
5 Correct 85 ms 39328 KB Output is correct
6 Correct 82 ms 39380 KB Output is correct
7 Correct 89 ms 39408 KB Output is correct
8 Correct 85 ms 39452 KB Output is correct
9 Correct 97 ms 44924 KB Output is correct
10 Correct 71 ms 26404 KB Output is correct
11 Correct 148 ms 46808 KB Output is correct
12 Correct 3 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 3 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 9 ms 15940 KB Output is correct
19 Correct 8 ms 15940 KB Output is correct
20 Correct 45 ms 36284 KB Output is correct
21 Correct 45 ms 36268 KB Output is correct
22 Correct 117 ms 45372 KB Output is correct
23 Correct 143 ms 53172 KB Output is correct
24 Correct 141 ms 54592 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 52 ms 24328 KB Output is correct
2 Correct 61 ms 27712 KB Output is correct
3 Correct 8 ms 15940 KB Output is correct
4 Correct 9 ms 15940 KB Output is correct
5 Correct 187 ms 64092 KB Output is correct
6 Correct 238 ms 65596 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1089 ms 29168 KB Time limit exceeded
9 Halted 0 ms 0 KB -