Submission #652442

# Submission time Handle Problem Language Result Execution time Memory
652442 2022-10-22T16:49:26 Z blue Catfish Farm (IOI22_fish) C++17
84 / 100
1000 ms 73780 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	vvll sm(2, vll(N, 0));
	for(int j = 0; j < M; j++)
		if(X[j] < 2)
			sm[X[j]][Y[j]] += W[j];
 
	if(N == 2)
	{
		return max(sm[0][0] + sm[0][1], sm[1][0] + sm[1][1]);
	}
 
	int rmx = 0;
	for(int j = 0; j < M; j++)
	{
		rmx = max(rmx, X[j]);
	};
 
	if(rmx <= 1)
	{
		ll tot = 0;
		for(int i = 0; i < N; i++)
			tot += sm[1][i];
 
		ll res = tot;
 
		for(int h = 0; h < N; h++)
		{
			tot += sm[0][h] - sm[1][h];
			res = max(res, tot);
		}
		return res;
	}
 
	int xmx = 0;
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		xmx = max(xmx, X[j] + 2);
		Y[j]++;
	}
	xmx = min(xmx, N);
 
	// cerr << "xmx = " << xmx << '\n';
 
	vpll fish[1+N];
	vll fishpref[1+N];
 
	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}
 
	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= xmx; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = vll(sz(fish[r]));
		for(int i = 0; i < sz(fishpref[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = vll{0};
 
	vvll inc(1+N), dec(1+N);
	vvll incpref(1+N), decpref(1+N); //pref inc dec mx
	inc[0] = dec[0] = vll{0};
 
	// cerr << "done\n";
 
	for(int r = 1; r <= xmx; r++)
	{
		incpref[r-1] = inc[r-1];
		decpref[r-1] = dec[r-1];
		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		inc[r] = dec[r] = vll(sz(fish[r]), 0);
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));
 
			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];
 
			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}
 
				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;
 
		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;
 
			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}
 
			// ll prevpwt = htwt(r-1, fish[r][i].first - 1);
			// cerr << prevpwt << " " << qwt << '\n';
			// assert(prevpwt == qwt);
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				//B
				/*for(int j = 0; j <= ploci; j++)
				{
					// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					ll medcatch = 0;
					for(int k = 0; k < sz(fish[r-1]); k++)
						if(fish[r-1][k].first <= fish[r][i].first - 1)
							medcatch += fish[r-1][k].second;
 
					selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				}*/
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
				// for(int j = 0; j <= ploci; j++)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					
 
				// 	// selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + Bcatch);
				// 	selfmax(basic, )
				// }
 
 
				//C
				// for(int j = sz(fish[r-2])-1; j > ploci; j--)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
				// 	ll medcatch = 0;
				// 	for(int k = 0; k < sz(fish[r-1]); k++)
				// 		if(fish[r-1][k].first <= fish[r-2][j].first - 1)
				// 			medcatch += fish[r-1][k].second;
 
				// 	selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				// }
 
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			// for(int j = 0; j < sz(fish[r-1]) && fish[r-1][j].first <= fish[r][i].first; j++)
			// {
			// 	// cerr << "j = " << j << " , " << fish[r-1][j].first-1 << '\n';
			// 	// ll ext = 0;
				
			// 	// cerr << "case 1\n";
			// 	// for(int k = j; k < sz(fish[r-1]); k++)
			// 	// {
			// 	// 	if(fish[r-1][k].first <= fish[r][i].first - 1)
			// 	// 		ext += fish[r-1][k].second;
			// 	// }
			// 	// if(j >= 1)
			// 	// 	ext -= fishpref[r-1][j-1];
			// 	// ll ext = -invhtwt(r-1, fish[r][i].first);
 
			// 	selfmax(inc[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// 	selfmax(dec[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// }
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;
 
		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}
	}
 
	ll res = 0;
	for(vll x : inc)
		for(ll y : x)
			res = max(res, y);
	for(vll x : dec)
		for(ll y : x)
			res = max(res, y);
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 27 ms 10188 KB Output is correct
2 Correct 33 ms 10928 KB Output is correct
3 Correct 4 ms 8148 KB Output is correct
4 Correct 4 ms 8020 KB Output is correct
5 Correct 257 ms 72124 KB Output is correct
6 Correct 323 ms 73780 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 60 ms 13468 KB Output is correct
3 Correct 63 ms 16024 KB Output is correct
4 Correct 28 ms 10956 KB Output is correct
5 Correct 33 ms 11852 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 4 ms 5716 KB Output is correct
9 Correct 3 ms 5716 KB Output is correct
10 Correct 5 ms 8020 KB Output is correct
11 Correct 6 ms 8148 KB Output is correct
12 Correct 32 ms 10896 KB Output is correct
13 Correct 36 ms 11940 KB Output is correct
14 Correct 32 ms 10832 KB Output is correct
15 Correct 35 ms 11536 KB Output is correct
16 Correct 32 ms 10956 KB Output is correct
17 Correct 39 ms 11448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8148 KB Output is correct
2 Correct 71 ms 44048 KB Output is correct
3 Correct 93 ms 42396 KB Output is correct
4 Correct 100 ms 43328 KB Output is correct
5 Correct 120 ms 48504 KB Output is correct
6 Correct 134 ms 47960 KB Output is correct
7 Correct 120 ms 48588 KB Output is correct
8 Correct 142 ms 48560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 4 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5752 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 5 ms 6080 KB Output is correct
11 Correct 4 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 4 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5752 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 5 ms 6080 KB Output is correct
11 Correct 4 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 27 ms 10752 KB Output is correct
18 Correct 27 ms 11356 KB Output is correct
19 Correct 25 ms 11224 KB Output is correct
20 Correct 30 ms 11212 KB Output is correct
21 Correct 26 ms 11136 KB Output is correct
22 Correct 49 ms 16716 KB Output is correct
23 Correct 8 ms 6740 KB Output is correct
24 Correct 19 ms 9036 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 8 ms 6672 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 4 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 4 ms 5716 KB Output is correct
7 Correct 4 ms 5752 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 4 ms 5844 KB Output is correct
10 Correct 5 ms 6080 KB Output is correct
11 Correct 4 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 27 ms 10752 KB Output is correct
18 Correct 27 ms 11356 KB Output is correct
19 Correct 25 ms 11224 KB Output is correct
20 Correct 30 ms 11212 KB Output is correct
21 Correct 26 ms 11136 KB Output is correct
22 Correct 49 ms 16716 KB Output is correct
23 Correct 8 ms 6740 KB Output is correct
24 Correct 19 ms 9036 KB Output is correct
25 Correct 4 ms 5972 KB Output is correct
26 Correct 8 ms 6672 KB Output is correct
27 Correct 7 ms 7124 KB Output is correct
28 Correct 132 ms 31896 KB Output is correct
29 Correct 298 ms 40580 KB Output is correct
30 Correct 184 ms 40328 KB Output is correct
31 Correct 156 ms 40388 KB Output is correct
32 Correct 180 ms 42404 KB Output is correct
33 Correct 169 ms 40456 KB Output is correct
34 Correct 157 ms 40008 KB Output is correct
35 Correct 62 ms 19516 KB Output is correct
36 Correct 172 ms 39704 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 8148 KB Output is correct
2 Correct 71 ms 44048 KB Output is correct
3 Correct 93 ms 42396 KB Output is correct
4 Correct 100 ms 43328 KB Output is correct
5 Correct 120 ms 48504 KB Output is correct
6 Correct 134 ms 47960 KB Output is correct
7 Correct 120 ms 48588 KB Output is correct
8 Correct 142 ms 48560 KB Output is correct
9 Correct 135 ms 53516 KB Output is correct
10 Correct 89 ms 31572 KB Output is correct
11 Correct 191 ms 57540 KB Output is correct
12 Correct 3 ms 5716 KB Output is correct
13 Correct 3 ms 5796 KB Output is correct
14 Correct 5 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 4 ms 5716 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 4 ms 8020 KB Output is correct
19 Correct 4 ms 8104 KB Output is correct
20 Correct 76 ms 44132 KB Output is correct
21 Correct 80 ms 44032 KB Output is correct
22 Correct 179 ms 54832 KB Output is correct
23 Correct 180 ms 62116 KB Output is correct
24 Correct 201 ms 65252 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 27 ms 10188 KB Output is correct
2 Correct 33 ms 10928 KB Output is correct
3 Correct 4 ms 8148 KB Output is correct
4 Correct 4 ms 8020 KB Output is correct
5 Correct 257 ms 72124 KB Output is correct
6 Correct 323 ms 73780 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 60 ms 13468 KB Output is correct
9 Correct 63 ms 16024 KB Output is correct
10 Correct 28 ms 10956 KB Output is correct
11 Correct 33 ms 11852 KB Output is correct
12 Correct 4 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5716 KB Output is correct
15 Correct 3 ms 5716 KB Output is correct
16 Correct 5 ms 8020 KB Output is correct
17 Correct 6 ms 8148 KB Output is correct
18 Correct 32 ms 10896 KB Output is correct
19 Correct 36 ms 11940 KB Output is correct
20 Correct 32 ms 10832 KB Output is correct
21 Correct 35 ms 11536 KB Output is correct
22 Correct 32 ms 10956 KB Output is correct
23 Correct 39 ms 11448 KB Output is correct
24 Correct 5 ms 8148 KB Output is correct
25 Correct 71 ms 44048 KB Output is correct
26 Correct 93 ms 42396 KB Output is correct
27 Correct 100 ms 43328 KB Output is correct
28 Correct 120 ms 48504 KB Output is correct
29 Correct 134 ms 47960 KB Output is correct
30 Correct 120 ms 48588 KB Output is correct
31 Correct 142 ms 48560 KB Output is correct
32 Correct 3 ms 5716 KB Output is correct
33 Correct 3 ms 5716 KB Output is correct
34 Correct 4 ms 5716 KB Output is correct
35 Correct 3 ms 5716 KB Output is correct
36 Correct 3 ms 5716 KB Output is correct
37 Correct 4 ms 5716 KB Output is correct
38 Correct 4 ms 5752 KB Output is correct
39 Correct 3 ms 5716 KB Output is correct
40 Correct 4 ms 5844 KB Output is correct
41 Correct 5 ms 6080 KB Output is correct
42 Correct 4 ms 5844 KB Output is correct
43 Correct 4 ms 5972 KB Output is correct
44 Correct 3 ms 5716 KB Output is correct
45 Correct 4 ms 5972 KB Output is correct
46 Correct 4 ms 5844 KB Output is correct
47 Correct 4 ms 5972 KB Output is correct
48 Correct 27 ms 10752 KB Output is correct
49 Correct 27 ms 11356 KB Output is correct
50 Correct 25 ms 11224 KB Output is correct
51 Correct 30 ms 11212 KB Output is correct
52 Correct 26 ms 11136 KB Output is correct
53 Correct 49 ms 16716 KB Output is correct
54 Correct 8 ms 6740 KB Output is correct
55 Correct 19 ms 9036 KB Output is correct
56 Correct 4 ms 5972 KB Output is correct
57 Correct 8 ms 6672 KB Output is correct
58 Correct 7 ms 7124 KB Output is correct
59 Correct 132 ms 31896 KB Output is correct
60 Correct 298 ms 40580 KB Output is correct
61 Correct 184 ms 40328 KB Output is correct
62 Correct 156 ms 40388 KB Output is correct
63 Correct 180 ms 42404 KB Output is correct
64 Correct 169 ms 40456 KB Output is correct
65 Correct 157 ms 40008 KB Output is correct
66 Correct 62 ms 19516 KB Output is correct
67 Correct 172 ms 39704 KB Output is correct
68 Correct 135 ms 53516 KB Output is correct
69 Correct 89 ms 31572 KB Output is correct
70 Correct 191 ms 57540 KB Output is correct
71 Correct 3 ms 5716 KB Output is correct
72 Correct 3 ms 5796 KB Output is correct
73 Correct 5 ms 5716 KB Output is correct
74 Correct 3 ms 5716 KB Output is correct
75 Correct 4 ms 5716 KB Output is correct
76 Correct 3 ms 5716 KB Output is correct
77 Correct 4 ms 8020 KB Output is correct
78 Correct 4 ms 8104 KB Output is correct
79 Correct 76 ms 44132 KB Output is correct
80 Correct 80 ms 44032 KB Output is correct
81 Correct 179 ms 54832 KB Output is correct
82 Correct 180 ms 62116 KB Output is correct
83 Correct 201 ms 65252 KB Output is correct
84 Execution timed out 1055 ms 56460 KB Time limit exceeded
85 Halted 0 ms 0 KB -