답안 #64858

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
64858 2018-08-06T00:06:14 Z qkxwsm 철인 이종 경기 (APIO18_duathlon) C++17
58 / 100
336 ms 48112 KB
/*
PROG: source
LANG: C++11
_____
.'     '.
/  0   0  \
|     ^     |
|  \     /  |
\  '---'  /
'._____.'
*/
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;

struct chash
{
        int operator()(int x) const
        {
                x ^= (x >> 20) ^ (x >> 12);
                return x ^ (x >> 7) ^ (x >> 4);
        }
        int operator()(long long x) const
        {
                return x ^ (x >> 32);
        }
};

template<typename T> using orderedset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T> using hashtable = gp_hash_table<T, T, chash>;

template<class T>
void readi(T &x)
{
        T input = 0;
        bool negative = false;
        char c = ' ';
        while (c < '-')
        {
                c = getchar();
        }
        if (c == '-')
        {
                negative = true;
                c = getchar();
        }
        while (c >= '0')
        {
                input = input * 10 + (c - '0');
                c = getchar();
        }
        if (negative)
        {
                input = -input;
        }
        x = input;
}
template<class T>
void printi(T output)
{
        if (output == 0)
        {
                putchar('0');
                return;
        }
        if (output < 0)
        {
                putchar('-');
                output = -output;
        }
        int aout[20];
        int ilen = 0;
        while(output)
        {
                aout[ilen] = ((output % 10));
                output /= 10;
                ilen++;
        }
        for (int i = ilen - 1; i >= 0; i--)
        {
                putchar(aout[i] + '0');
        }
        return;
}
template<class T>
void ckmin(T &a, T b)
{
        a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
        a = max(a, b);
}
template<class T>
T normalize(T x, T mod = 1000000007)
{
        return (((x % mod) + mod) % mod);
}
long long randomizell(long long mod)
{
        return ((1ll << 45) * rand() + (1ll << 30) * rand() + (1ll << 15) * rand() + rand()) % mod;
}
int randomize(int mod)
{
        return ((1ll << 15) * rand() + rand()) % mod;
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define PF push_front
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define debug(x) cerr << #x << " = " << x << endl;

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-10;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 200013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;

int N, M, T, K;
vector<int> edge[MAXN], edge1[MAXN];
int sz[MAXN];
vector<pii> bridge;
vector<pii> edges;
bool ap[MAXN];
vector<int> bcc[MAXN];
int id[MAXN], aid[MAXN];
int parent[MAXN];
int subtree[MAXN];
int disc[MAXN], low[MAXN];
int dsu[MAXN], dsz[MAXN];
vector<int> nodes[MAXN];
bool seen[MAXN];
ll ans = 0, tot = 0;

int find_parent(int u)
{
        return (u == dsu[u] ? u : dsu[u] = find_parent(dsu[u]));
}
void merge(int u, int v)
{
        u = find_parent(u);
        v = find_parent(v);
        if (u == v) return;
        if (dsz[u] > dsz[v])
        {
                swap(u, v);
        }
        dsz[v] += dsz[u];
        dsz[u] = 0;
        dsu[u] = v;
        return;
}
void dfs(int u, bool head = false)
{
        disc[u] = T;
        low[u] = T;
        seen[u] = true;
        T++;
        int children = 0;
        for (int v : edge[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                if (seen[v])
                {
                        ckmin(low[u], low[v]);
                        continue;
                }
                children++;
                parent[v] = u;
                edges.PB({u, v});
                dfs(v);
                ckmin(low[u], low[v]);
                if (low[v] >= disc[u])
                {
                        if (low[v] != disc[u])
                        {
                                bridge.PB({u, v});
                        }
                        if (!head)
                        {
                                ap[u] = true;
                                while(edges.back() != MP(u, v))
                                {
                                        bcc[K].PB(edges.back().fi);
                                        bcc[K].PB(edges.back().se);
                                        edges.pop_back();
                                }
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                                K++;
                        }
                }
                if (head)
                {
                        if (children > 1)
                        {
                                ap[u] = true;
                        }
                        while(edges.back() != MP(u, v))
                        {
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                        }
                        bcc[K].PB(edges.back().fi);
                        bcc[K].PB(edges.back().se);
                        edges.pop_back();
                        K++;
                }
        }
}
void dfs1(int u)
{
        subtree[u] = sz[u];
        for (int v : edge1[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                parent[v] = u;
                dfs1(v);
                subtree[u] += subtree[v];
        }
        return;
}

int32_t main()
{
        ios_base::sync_with_stdio(0);
        srand(time(0));
        //	cout << fixed << setprecision(10);
        //	cerr << fixed << setprecision(10);
        if (fopen("input.in", "r"))
        {
                freopen ("input.in", "r", stdin);
                freopen ("output.out", "w", stdout);
        }
        cin >> N >> M;
        for (int i = 0; i < N; i++)
        {
                dsu[i] = i;
                dsz[i] = i;
        }
        for (int i = 0; i < M; i++)
        {
                int u, v;
                cin >> u >> v;
                u--; v--;
                edge[u].PB(v);
                edge[v].PB(u);
                merge(u, v);
        }
        for (int i = 0; i < N; i++)
        {
                parent[i] = N;
        }
        for (int i = 0; i < N; i++)
        {
                nodes[find_parent(i)].PB(i);
        }
        for (int cc = 0; cc < N; cc++)
        {
                if (find_parent(cc) != cc)
                {
                        continue;
                }
                int n = nodes[cc].size();
                dfs(cc, 1);
                for (int i = 0; i < K; i++)
                {
                        sort(bcc[i].begin(), bcc[i].end());
                        bcc[i].erase(unique(bcc[i].begin(), bcc[i].end()), bcc[i].end());
                        // cerr << "bcc # " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                id[u] = i;
                                if (!ap[u])
                                {
                                        sz[i]++;
                                }
                        }
                        // cerr << endl;
                }
                for (int i = 0; i < n; i++)
                {
                        int u = nodes[cc][i];
                        if (ap[u])
                        {
                                aid[u] = K;
                                sz[K] = 1;
                                K++;
                                // cerr << "ap " << i << " id " << K - 1 << endl;
                        }
                }
                for (int i = 0; i < K; i++)
                {
                        // cerr << "bcc " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                if (ap[u])
                                {
                                        edge1[i].PB(aid[u]);
                                        edge1[aid[u]].PB(i);
                                }
                        }
                        // cerr << endl;
                }
                // for (int i = 0; i < K; i++)
                // {
                //         for (int u : edge1[i])
                //         {
                //                 if (i <= u) cerr << i << " -> " << u << endl;
                //         }
                // }
                // for (int i = 0; i < K; i++)
                // {
                //         cerr << sz[i] << ' ';
                // }
                // cerr << endl;
                for (int i = 0; i < K; i++)
                {
                        parent[i] = K;
                }
                dfs1(0);
                //all 3 distinct blocks
                //the only violations allowed are: guy -> ap in u -> u
                for (int i = 0; i < K; i++)
                {
                        tot += 1ll * (n - sz[i]) * sz[i] * (n - sz[i] - 1);
                        if (bcc[i].empty())
                        {
                                for (int v : edge1[i])
                                {
                                        for (int w : edge1[v])
                                        {
                                                if (w == i) continue;
                                                if (w == parent[v]) continue;
                                                // if (i == 4) cerr << w << 'X' << v << endl;
                                                tot -= 1ll * subtree[w] * (subtree[w] - 1);
                                        }
                                        // tot -= 1ll * (n - subtree[parent[v]]) * (n - subtree[parent[v]] - 1);
                                }
                                tot -= 1ll * (n - subtree[parent[i]]) * (n - subtree[parent[i]] - 1);
                        }
                        else
                        {
                                for (int v : edge1[i])
                                {
                                        if (v == parent[i]) continue;
                                        tot -= 1ll * sz[i] * (subtree[v]) * (subtree[v] - 1);
                                }
                                tot -= 1ll * sz[i] * (n - subtree[i]) * (n - subtree[i] - 1);
                        }
                        // cerr << "after center " << i << " get " << tot << endl;
                        // tot += 2ll * sz[i] * (n - subtree[i]) * (subtree[i] - sz[i]);
                }
                // debug(tot);
                //three equal guys
                for (int i = 0; i < K; i++)
                {
                        tot += 1ll * sz[i] * (sz[i] - 1) * (sz[i] - 2);
                }
                // debug(tot);
                //a=b or b=c BUT NOT BOTH!
                for (int i = 0; i < K; i++)
                {
                        tot += 2ll * sz[i] * (sz[i] - 1) * (n - sz[i]);
                }
                // debug(tot);
                if (K == 1)
                {
                        ans += n * (n - 1) * (n - 2);
                }
                else
                {
                        ans += tot;
                }
                for (int i = 0; i < K; i++)
                {
                        bcc[i].clear();
                        sz[i] = 0;
                        edge1[i].clear();
                        subtree[i] = 0;
                }
                K = 0; T = 0; tot = 0;
        }
        // for (int i = 0; i < K; i++)
        // {
        //     for (int v : edge1[i])
        //     {
        //         cerr << i << "->" << v << endl;
        //     }
        //     cerr << "size " << i << " = " << sz[i] << endl;
        // }
        // for (int i = 0; i < K; i++)
        // {
        //         cerr << "subtree " << i << "=" << subtree[i] << endl;
        // }
        //if a -> b must pass through c, then: a -> b -> c is bad; c -> b -> a is bad, c -> a -> b is bad, b -> a -> c
        //three separate components
        cout << ans << '\n';
        //	cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
        return 0;
}

Compilation message

count_triplets.cpp: In function 'int32_t main()':
count_triplets.cpp:264:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("input.in", "r", stdin);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
count_triplets.cpp:265:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("output.out", "w", stdout);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 21 ms 19308 KB Output is correct
3 Correct 24 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 19 ms 19308 KB Output is correct
6 Correct 19 ms 19308 KB Output is correct
7 Correct 21 ms 19308 KB Output is correct
8 Correct 20 ms 19368 KB Output is correct
9 Correct 22 ms 19416 KB Output is correct
10 Correct 18 ms 19416 KB Output is correct
11 Correct 21 ms 19416 KB Output is correct
12 Correct 23 ms 19440 KB Output is correct
13 Correct 20 ms 19440 KB Output is correct
14 Correct 22 ms 19440 KB Output is correct
15 Incorrect 20 ms 19440 KB Output isn't correct
16 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 21 ms 19308 KB Output is correct
3 Correct 24 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 19 ms 19308 KB Output is correct
6 Correct 19 ms 19308 KB Output is correct
7 Correct 21 ms 19308 KB Output is correct
8 Correct 20 ms 19368 KB Output is correct
9 Correct 22 ms 19416 KB Output is correct
10 Correct 18 ms 19416 KB Output is correct
11 Correct 21 ms 19416 KB Output is correct
12 Correct 23 ms 19440 KB Output is correct
13 Correct 20 ms 19440 KB Output is correct
14 Correct 22 ms 19440 KB Output is correct
15 Incorrect 20 ms 19440 KB Output isn't correct
16 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 201 ms 36640 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 36640 KB Output is correct
2 Correct 20 ms 36640 KB Output is correct
3 Correct 20 ms 36640 KB Output is correct
4 Correct 26 ms 36640 KB Output is correct
5 Correct 20 ms 36640 KB Output is correct
6 Correct 21 ms 36640 KB Output is correct
7 Correct 20 ms 36640 KB Output is correct
8 Correct 24 ms 36640 KB Output is correct
9 Correct 20 ms 36640 KB Output is correct
10 Correct 21 ms 36640 KB Output is correct
11 Correct 22 ms 36640 KB Output is correct
12 Correct 24 ms 36640 KB Output is correct
13 Correct 22 ms 36640 KB Output is correct
14 Correct 22 ms 36640 KB Output is correct
15 Correct 21 ms 36640 KB Output is correct
16 Correct 22 ms 36640 KB Output is correct
17 Correct 21 ms 36640 KB Output is correct
18 Correct 23 ms 36640 KB Output is correct
19 Correct 75 ms 36640 KB Output is correct
20 Correct 25 ms 36640 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 321 ms 36640 KB Output is correct
2 Correct 262 ms 36640 KB Output is correct
3 Correct 230 ms 36640 KB Output is correct
4 Correct 229 ms 36640 KB Output is correct
5 Correct 272 ms 36640 KB Output is correct
6 Correct 336 ms 48112 KB Output is correct
7 Correct 296 ms 48112 KB Output is correct
8 Correct 262 ms 48112 KB Output is correct
9 Correct 305 ms 48112 KB Output is correct
10 Correct 252 ms 48112 KB Output is correct
11 Correct 283 ms 48112 KB Output is correct
12 Correct 214 ms 48112 KB Output is correct
13 Correct 199 ms 48112 KB Output is correct
14 Correct 185 ms 48112 KB Output is correct
15 Correct 142 ms 48112 KB Output is correct
16 Correct 160 ms 48112 KB Output is correct
17 Correct 140 ms 48112 KB Output is correct
18 Correct 147 ms 48112 KB Output is correct
19 Correct 159 ms 48112 KB Output is correct
20 Correct 159 ms 48112 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 26 ms 48112 KB Output is correct
2 Correct 20 ms 48112 KB Output is correct
3 Correct 21 ms 48112 KB Output is correct
4 Correct 25 ms 48112 KB Output is correct
5 Correct 23 ms 48112 KB Output is correct
6 Correct 25 ms 48112 KB Output is correct
7 Correct 25 ms 48112 KB Output is correct
8 Correct 22 ms 48112 KB Output is correct
9 Correct 23 ms 48112 KB Output is correct
10 Correct 21 ms 48112 KB Output is correct
11 Correct 23 ms 48112 KB Output is correct
12 Correct 21 ms 48112 KB Output is correct
13 Correct 23 ms 48112 KB Output is correct
14 Correct 26 ms 48112 KB Output is correct
15 Correct 21 ms 48112 KB Output is correct
16 Correct 24 ms 48112 KB Output is correct
17 Correct 22 ms 48112 KB Output is correct
18 Correct 23 ms 48112 KB Output is correct
19 Correct 19 ms 48112 KB Output is correct
20 Correct 21 ms 48112 KB Output is correct
21 Correct 21 ms 48112 KB Output is correct
22 Correct 21 ms 48112 KB Output is correct
23 Correct 19 ms 48112 KB Output is correct
24 Correct 22 ms 48112 KB Output is correct
25 Correct 21 ms 48112 KB Output is correct
26 Correct 21 ms 48112 KB Output is correct
27 Correct 20 ms 48112 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 219 ms 48112 KB Output is correct
2 Correct 290 ms 48112 KB Output is correct
3 Correct 227 ms 48112 KB Output is correct
4 Correct 243 ms 48112 KB Output is correct
5 Correct 172 ms 48112 KB Output is correct
6 Correct 171 ms 48112 KB Output is correct
7 Correct 157 ms 48112 KB Output is correct
8 Correct 145 ms 48112 KB Output is correct
9 Correct 145 ms 48112 KB Output is correct
10 Correct 200 ms 48112 KB Output is correct
11 Correct 191 ms 48112 KB Output is correct
12 Correct 132 ms 48112 KB Output is correct
13 Correct 135 ms 48112 KB Output is correct
14 Correct 150 ms 48112 KB Output is correct
15 Correct 248 ms 48112 KB Output is correct
16 Correct 246 ms 48112 KB Output is correct
17 Correct 310 ms 48112 KB Output is correct
18 Correct 229 ms 48112 KB Output is correct
19 Correct 212 ms 48112 KB Output is correct
20 Correct 191 ms 48112 KB Output is correct
21 Correct 247 ms 48112 KB Output is correct
22 Correct 220 ms 48112 KB Output is correct
23 Correct 153 ms 48112 KB Output is correct
24 Correct 191 ms 48112 KB Output is correct
25 Correct 192 ms 48112 KB Output is correct
26 Correct 196 ms 48112 KB Output is correct
27 Correct 193 ms 48112 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 21 ms 19308 KB Output is correct
3 Correct 24 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 19 ms 19308 KB Output is correct
6 Correct 19 ms 19308 KB Output is correct
7 Correct 21 ms 19308 KB Output is correct
8 Correct 20 ms 19368 KB Output is correct
9 Correct 22 ms 19416 KB Output is correct
10 Correct 18 ms 19416 KB Output is correct
11 Correct 21 ms 19416 KB Output is correct
12 Correct 23 ms 19440 KB Output is correct
13 Correct 20 ms 19440 KB Output is correct
14 Correct 22 ms 19440 KB Output is correct
15 Incorrect 20 ms 19440 KB Output isn't correct
16 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 21 ms 19308 KB Output is correct
3 Correct 24 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 19 ms 19308 KB Output is correct
6 Correct 19 ms 19308 KB Output is correct
7 Correct 21 ms 19308 KB Output is correct
8 Correct 20 ms 19368 KB Output is correct
9 Correct 22 ms 19416 KB Output is correct
10 Correct 18 ms 19416 KB Output is correct
11 Correct 21 ms 19416 KB Output is correct
12 Correct 23 ms 19440 KB Output is correct
13 Correct 20 ms 19440 KB Output is correct
14 Correct 22 ms 19440 KB Output is correct
15 Incorrect 20 ms 19440 KB Output isn't correct
16 Halted 0 ms 0 KB -