답안 #64849

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
64849 2018-08-05T22:50:06 Z qkxwsm 철인 이종 경기 (APIO18_duathlon) C++17
31 / 100
369 ms 60904 KB
/*
PROG: source
LANG: C++11
_____
.'     '.
/  0   0  \
|     ^     |
|  \     /  |
\  '---'  /
'._____.'
*/
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;

struct chash
{
        int operator()(int x) const
        {
                x ^= (x >> 20) ^ (x >> 12);
                return x ^ (x >> 7) ^ (x >> 4);
        }
        int operator()(long long x) const
        {
                return x ^ (x >> 32);
        }
};

template<typename T> using orderedset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T> using hashtable = gp_hash_table<T, T, chash>;

template<class T>
void readi(T &x)
{
        T input = 0;
        bool negative = false;
        char c = ' ';
        while (c < '-')
        {
                c = getchar();
        }
        if (c == '-')
        {
                negative = true;
                c = getchar();
        }
        while (c >= '0')
        {
                input = input * 10 + (c - '0');
                c = getchar();
        }
        if (negative)
        {
                input = -input;
        }
        x = input;
}
template<class T>
void printi(T output)
{
        if (output == 0)
        {
                putchar('0');
                return;
        }
        if (output < 0)
        {
                putchar('-');
                output = -output;
        }
        int aout[20];
        int ilen = 0;
        while(output)
        {
                aout[ilen] = ((output % 10));
                output /= 10;
                ilen++;
        }
        for (int i = ilen - 1; i >= 0; i--)
        {
                putchar(aout[i] + '0');
        }
        return;
}
template<class T>
void ckmin(T &a, T b)
{
        a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
        a = max(a, b);
}
template<class T>
T normalize(T x, T mod = 1000000007)
{
        return (((x % mod) + mod) % mod);
}
long long randomizell(long long mod)
{
        return ((1ll << 45) * rand() + (1ll << 30) * rand() + (1ll << 15) * rand() + rand()) % mod;
}
int randomize(int mod)
{
        return ((1ll << 15) * rand() + rand()) % mod;
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define PF push_front
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define debug(x) cerr << #x << " = " << x << endl;

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-10;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 200013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;

int N, M, T, K;
vector<int> edge[MAXN], edge1[MAXN];
int sz[MAXN];
vector<pii> bridge;
vector<pii> edges;
bool ap[MAXN];
vector<int> bcc[MAXN];
int id[MAXN], aid[MAXN];
int parent[MAXN];
int subtree[MAXN];
int disc[MAXN], low[MAXN];
int dsu[MAXN], dsz[MAXN];
vector<int> nodes[MAXN];
bool seen[MAXN];
ll ans = 0, tot = 0;

int find_parent(int u)
{
        return (u == dsu[u] ? u : dsu[u] = find_parent(dsu[u]));
}
void merge(int u, int v)
{
        u = find_parent(u);
        v = find_parent(v);
        if (u == v) return;
        if (dsz[u] > dsz[v])
        {
                swap(u, v);
        }
        dsz[v] += dsz[u];
        dsz[u] = 0;
        dsu[u] = v;
        return;
}
void dfs(int u, bool head = false)
{
        disc[u] = T;
        low[u] = T;
        seen[u] = true;
        T++;
        int children = 0;
        for (int v : edge[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                if (seen[v])
                {
                        ckmin(low[u], low[v]);
                        continue;
                }
                children++;
                parent[v] = u;
                edges.PB({u, v});
                dfs(v);
                ckmin(low[u], low[v]);
                if (low[v] >= disc[u])
                {
                        if (low[v] != disc[u])
                        {
                                bridge.PB({u, v});
                        }
                        if (!head)
                        {
                                ap[u] = true;
                                while(edges.back() != MP(u, v))
                                {
                                        bcc[K].PB(edges.back().fi);
                                        bcc[K].PB(edges.back().se);
                                        edges.pop_back();
                                }
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                                K++;
                        }
                }
                if (head)
                {
                        if (children > 1)
                        {
                                ap[u] = true;
                        }
                        while(edges.back() != MP(u, v))
                        {
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                        }
                        bcc[K].PB(edges.back().fi);
                        bcc[K].PB(edges.back().se);
                        edges.pop_back();
                        K++;
                }
        }
}
void dfs1(int u)
{
        subtree[u] = sz[u];
        for (int v : edge1[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                parent[v] = u;
                dfs1(v);
                subtree[u] += subtree[v];
        }
        return;
}

int32_t main()
{
        ios_base::sync_with_stdio(0);
        srand(time(0));
        //	cout << fixed << setprecision(10);
        //	cerr << fixed << setprecision(10);
        if (fopen("input.in", "r"))
        {
                freopen ("input.in", "r", stdin);
                freopen ("output.out", "w", stdout);
        }
        cin >> N >> M;
        for (int i = 0; i < N; i++)
        {
                dsu[i] = i;
                dsz[i] = i;
        }
        for (int i = 0; i < M; i++)
        {
                int u, v;
                cin >> u >> v;
                u--; v--;
                edge[u].PB(v);
                edge[v].PB(u);
                merge(u, v);
        }
        for (int i = 0; i < N; i++)
        {
                parent[i] = N;
        }
        for (int i = 0; i < N; i++)
        {
                nodes[find_parent(i)].PB(i);
        }
        for (int cc = 0; cc < N; cc++)
        {
                if (find_parent(cc) != cc)
                {
                        continue;
                }
                int n = nodes[cc].size();
                dfs(cc, 1);
                for (int i = 0; i < K; i++)
                {
                        sort(bcc[i].begin(), bcc[i].end());
                        bcc[i].erase(unique(bcc[i].begin(), bcc[i].end()), bcc[i].end());
                        // cerr << "bcc # " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                id[u] = i;
                                if (!ap[u])
                                {
                                        sz[i]++;
                                }
                        }
                        // cerr << endl;
                }
                for (int i = 0; i < n; i++)
                {
                        int u = nodes[cc][i];
                        if (ap[u])
                        {
                                aid[u] = K;
                                sz[K] = 1;
                                K++;
                                // cerr << "ap " << i << " id " << K - 1 << endl;
                        }
                }
                for (int i = 0; i < K; i++)
                {
                        // cerr << "bcc " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                if (ap[u])
                                {
                                        edge1[i].PB(aid[u]);
                                        edge1[aid[u]].PB(i);
                                        // cerr << "edge1 " << aid[u] << ' ' << i << endl;
                                }
                        }
                        // cerr << endl;
                }
                // for (int i = 0; i < K; i++)
                // {
                //         for (int u : edge1[i])
                //         {
                //                 if (i <= u) cerr << i << " -> " << u << endl;
                //         }
                // }
                for (int i = 0; i < K; i++)
                {
                        parent[i] = K;
                }
                dfs1(0);
                //all 3 distinct blocks
                //the only violations allowed are: guy -> ap in u -> u
                for (int i = 0; i < K; i++)
                {
                        tot += 1ll * sz[i] * (n - sz[i]) * (n - sz[i] - 1);
                        if (bcc[i].empty())
                        {
                                for (int v : edge1[i])
                                {
                                        if (v == parent[i]) continue;
                                        tot -= 1ll * sz[i] * (subtree[v] - sz[v]) * (subtree[v] - sz[v] - 1);
                                }
                                tot -= 1ll * sz[i] * (n - subtree[i] - sz[parent[i]]) * (n - subtree[i] - sz[parent[i]] - 1);
                        }
                        else
                        {
                                for (int v : edge1[i])
                                {
                                        if (v == parent[i]) continue;
                                        tot -= 1ll * sz[i] * (subtree[v]) * (subtree[v] - 1);
                                }
                                tot -= 1ll * sz[i] * (n - subtree[i]) * (n - subtree[i] - 1);
                        }
                        // tot += 2ll * sz[i] * (n - subtree[i]) * (subtree[i] - sz[i]);
                }
                //three equal guys
                for (int i = 0; i < K; i++)
                {
                        tot += 1ll * sz[i] * (sz[i] - 1) * (sz[i] - 2);
                }
                //a=b or b=c
                for (int i = 0; i < K; i++)
                {
                        tot += 2ll * sz[i] * (sz[i] - 1) * (n - sz[i]);
                }
                //a=c
                // for (int i = 0; i < K; i++)
                // {
                //         if (bcc[i].empty()) continue;
                //         tot += 1ll * sz[i] * (sz[i] - 1) * (edge1[i].size());
                // }
                for (int i = 0; i < K; i++)
                {
                        bcc[i].clear();
                        sz[i] = 0;
                        edge1[i].clear();
                        subtree[i] = 0;
                }
                ans += tot;
                K = 0; T = 0; tot = 0;
        }
        // for (int i = 0; i < K; i++)
        // {
        //     for (int v : edge1[i])
        //     {
        //         cerr << i << "->" << v << endl;
        //     }
        //     cerr << "size " << i << " = " << sz[i] << endl;
        // }
        // for (int i = 0; i < K; i++)
        // {
        //         cerr << "subtree " << i << "=" << subtree[i] << endl;
        // }
        //if a -> b must pass through c, then: a -> b -> c is bad; c -> b -> a is bad, c -> a -> b is bad, b -> a -> c
        //three separate components
        cout << ans << '\n';
        //	cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
        return 0;
}

Compilation message

count_triplets.cpp: In function 'int32_t main()':
count_triplets.cpp:264:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("input.in", "r", stdin);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
count_triplets.cpp:265:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("output.out", "w", stdout);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 20 ms 19308 KB Output is correct
3 Correct 21 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 20 ms 19436 KB Output is correct
6 Correct 20 ms 19436 KB Output is correct
7 Incorrect 20 ms 19436 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 20 ms 19308 KB Output is correct
3 Correct 21 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 20 ms 19436 KB Output is correct
6 Correct 20 ms 19436 KB Output is correct
7 Incorrect 20 ms 19436 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 184 ms 36712 KB Output is correct
2 Correct 194 ms 36712 KB Output is correct
3 Correct 236 ms 37652 KB Output is correct
4 Correct 213 ms 37808 KB Output is correct
5 Correct 267 ms 37808 KB Output is correct
6 Correct 241 ms 38252 KB Output is correct
7 Correct 204 ms 38252 KB Output is correct
8 Correct 214 ms 38252 KB Output is correct
9 Correct 195 ms 38252 KB Output is correct
10 Correct 209 ms 38252 KB Output is correct
11 Correct 161 ms 38252 KB Output is correct
12 Correct 197 ms 38252 KB Output is correct
13 Correct 169 ms 38252 KB Output is correct
14 Correct 172 ms 38252 KB Output is correct
15 Correct 142 ms 38252 KB Output is correct
16 Correct 237 ms 38252 KB Output is correct
17 Correct 43 ms 38252 KB Output is correct
18 Correct 37 ms 38252 KB Output is correct
19 Correct 31 ms 38252 KB Output is correct
20 Correct 38 ms 38252 KB Output is correct
21 Correct 34 ms 38252 KB Output is correct
22 Correct 30 ms 38252 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 38252 KB Output is correct
2 Correct 24 ms 38252 KB Output is correct
3 Correct 25 ms 38252 KB Output is correct
4 Correct 26 ms 38252 KB Output is correct
5 Correct 23 ms 38252 KB Output is correct
6 Correct 25 ms 38252 KB Output is correct
7 Correct 23 ms 38252 KB Output is correct
8 Correct 25 ms 38252 KB Output is correct
9 Correct 22 ms 38252 KB Output is correct
10 Correct 24 ms 38252 KB Output is correct
11 Correct 23 ms 38252 KB Output is correct
12 Correct 23 ms 38252 KB Output is correct
13 Correct 22 ms 38252 KB Output is correct
14 Correct 25 ms 38252 KB Output is correct
15 Correct 21 ms 38252 KB Output is correct
16 Correct 21 ms 38252 KB Output is correct
17 Correct 22 ms 38252 KB Output is correct
18 Correct 23 ms 38252 KB Output is correct
19 Correct 24 ms 38252 KB Output is correct
20 Correct 22 ms 38252 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 227 ms 38252 KB Output is correct
2 Correct 245 ms 38252 KB Output is correct
3 Correct 239 ms 38952 KB Output is correct
4 Correct 265 ms 40204 KB Output is correct
5 Correct 234 ms 41452 KB Output is correct
6 Correct 318 ms 54732 KB Output is correct
7 Correct 283 ms 54732 KB Output is correct
8 Correct 260 ms 54732 KB Output is correct
9 Correct 253 ms 54732 KB Output is correct
10 Correct 214 ms 54732 KB Output is correct
11 Correct 266 ms 54732 KB Output is correct
12 Correct 212 ms 54732 KB Output is correct
13 Correct 253 ms 54732 KB Output is correct
14 Correct 173 ms 54732 KB Output is correct
15 Correct 171 ms 54732 KB Output is correct
16 Correct 108 ms 54732 KB Output is correct
17 Correct 151 ms 54732 KB Output is correct
18 Correct 136 ms 54808 KB Output is correct
19 Correct 147 ms 56228 KB Output is correct
20 Correct 161 ms 57356 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 57356 KB Output is correct
2 Correct 22 ms 57356 KB Output is correct
3 Incorrect 22 ms 57356 KB Output isn't correct
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 228 ms 59208 KB Output is correct
2 Correct 269 ms 60904 KB Output is correct
3 Incorrect 369 ms 60904 KB Output isn't correct
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 20 ms 19308 KB Output is correct
3 Correct 21 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 20 ms 19436 KB Output is correct
6 Correct 20 ms 19436 KB Output is correct
7 Incorrect 20 ms 19436 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 22 ms 19192 KB Output is correct
2 Correct 20 ms 19308 KB Output is correct
3 Correct 21 ms 19308 KB Output is correct
4 Correct 19 ms 19308 KB Output is correct
5 Correct 20 ms 19436 KB Output is correct
6 Correct 20 ms 19436 KB Output is correct
7 Incorrect 20 ms 19436 KB Output isn't correct
8 Halted 0 ms 0 KB -