답안 #64848

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
64848 2018-08-05T21:57:25 Z qkxwsm 철인 이종 경기 (APIO18_duathlon) C++17
8 / 100
278 ms 56656 KB
/*
PROG: source
LANG: C++11
_____
.'     '.
/  0   0  \
|     ^     |
|  \     /  |
\  '---'  /
'._____.'
*/
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;

struct chash
{
        int operator()(int x) const
        {
                x ^= (x >> 20) ^ (x >> 12);
                return x ^ (x >> 7) ^ (x >> 4);
        }
        int operator()(long long x) const
        {
                return x ^ (x >> 32);
        }
};

template<typename T> using orderedset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T> using hashtable = gp_hash_table<T, T, chash>;

template<class T>
void readi(T &x)
{
        T input = 0;
        bool negative = false;
        char c = ' ';
        while (c < '-')
        {
                c = getchar();
        }
        if (c == '-')
        {
                negative = true;
                c = getchar();
        }
        while (c >= '0')
        {
                input = input * 10 + (c - '0');
                c = getchar();
        }
        if (negative)
        {
                input = -input;
        }
        x = input;
}
template<class T>
void printi(T output)
{
        if (output == 0)
        {
                putchar('0');
                return;
        }
        if (output < 0)
        {
                putchar('-');
                output = -output;
        }
        int aout[20];
        int ilen = 0;
        while(output)
        {
                aout[ilen] = ((output % 10));
                output /= 10;
                ilen++;
        }
        for (int i = ilen - 1; i >= 0; i--)
        {
                putchar(aout[i] + '0');
        }
        return;
}
template<class T>
void ckmin(T &a, T b)
{
        a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
        a = max(a, b);
}
template<class T>
T normalize(T x, T mod = 1000000007)
{
        return (((x % mod) + mod) % mod);
}
long long randomizell(long long mod)
{
        return ((1ll << 45) * rand() + (1ll << 30) * rand() + (1ll << 15) * rand() + rand()) % mod;
}
int randomize(int mod)
{
        return ((1ll << 15) * rand() + rand()) % mod;
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define PF push_front
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define debug(x) cerr << #x << " = " << x << endl;

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-10;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 200013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;

int N, M, T, K;
vector<int> edge[MAXN], edge1[MAXN];
int sz[MAXN];
vector<pii> bridge;
vector<pii> edges;
bool ap[MAXN];
vector<int> bcc[MAXN];
int id[MAXN], aid[MAXN];
int parent[MAXN];
int subtree[MAXN];
int disc[MAXN], low[MAXN];
int dsu[MAXN], dsz[MAXN];
vector<int> nodes[MAXN];
bool seen[MAXN];
ll ans = 0, tot = 0;

int find_parent(int u)
{
        return (u == dsu[u] ? u : dsu[u] = find_parent(dsu[u]));
}
void merge(int u, int v)
{
        u = find_parent(u);
        v = find_parent(v);
        if (u == v) return;
        if (dsz[u] > dsz[v])
        {
                swap(u, v);
        }
        dsz[v] += dsz[u];
        dsz[u] = 0;
        dsu[u] = v;
        return;
}
void dfs(int u, bool head = false)
{
        disc[u] = T;
        low[u] = T;
        seen[u] = true;
        T++;
        int children = 0;
        for (int v : edge[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                if (seen[v])
                {
                        ckmin(low[u], low[v]);
                        continue;
                }
                children++;
                parent[v] = u;
                edges.PB({u, v});
                dfs(v);
                ckmin(low[u], low[v]);
                if (low[v] >= disc[u])
                {
                        if (low[v] != disc[u])
                        {
                                bridge.PB({u, v});
                        }
                        if (!head)
                        {
                                ap[u] = true;
                                while(edges.back() != MP(u, v))
                                {
                                        bcc[K].PB(edges.back().fi);
                                        bcc[K].PB(edges.back().se);
                                        edges.pop_back();
                                }
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                                K++;
                        }
                }
                if (head)
                {
                        if (children > 1)
                        {
                                ap[u] = true;
                        }
                        while(edges.back() != MP(u, v))
                        {
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                        }
                        bcc[K].PB(edges.back().fi);
                        bcc[K].PB(edges.back().se);
                        edges.pop_back();
                        K++;
                }
        }
}
void dfs1(int u)
{
        subtree[u] = sz[u];
        for (int v : edge1[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                parent[v] = u;
                dfs1(v);
                subtree[u] += subtree[v];
        }
        return;
}

int32_t main()
{
        ios_base::sync_with_stdio(0);
        srand(time(0));
        //	cout << fixed << setprecision(10);
        //	cerr << fixed << setprecision(10);
        if (fopen("input.in", "r"))
        {
                freopen ("input.in", "r", stdin);
                freopen ("output.out", "w", stdout);
        }
        cin >> N >> M;
        for (int i = 0; i < N; i++)
        {
                dsu[i] = i;
                dsz[i] = i;
        }
        for (int i = 0; i < M; i++)
        {
                int u, v;
                cin >> u >> v;
                u--; v--;
                edge[u].PB(v);
                edge[v].PB(u);
                merge(u, v);
        }
        for (int i = 0; i < N; i++)
        {
                parent[i] = N;
        }
        for (int i = 0; i < N; i++)
        {
                nodes[find_parent(i)].PB(i);
        }
        for (int cc = 0; cc < N; cc++)
        {
                if (find_parent(cc) != cc)
                {
                        continue;
                }
                int n = nodes[cc].size();
                dfs(cc, 1);
                for (int i = 0; i < K; i++)
                {
                        sort(bcc[i].begin(), bcc[i].end());
                        bcc[i].erase(unique(bcc[i].begin(), bcc[i].end()), bcc[i].end());
                        // cerr << "bcc # " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                id[u] = i;
                                if (!ap[u])
                                {
                                        sz[i]++;
                                }
                        }
                        // cerr << endl;
                }
                for (int i = 0; i < n; i++)
                {
                        int u = nodes[cc][i];
                        if (ap[u])
                        {
                                aid[u] = K;
                                sz[K] = 1;
                                K++;
                                // cerr << "ap " << i << " id " << K - 1 << endl;
                        }
                }
                for (int i = 0; i < K; i++)
                {
                        // cerr << "bcc " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                if (ap[u])
                                {
                                        edge1[i].PB(aid[u]);
                                        edge1[aid[u]].PB(i);
                                        // cerr << "edge1 " << aid[u] << ' ' << i << endl;
                                }
                        }
                        // cerr << endl;
                }
                // for (int i = 0; i < K; i++)
                // {
                //         for (int u : edge1[i])
                //         {
                //                 if (i <= u) cerr << i << " -> " << u << endl;
                //         }
                // }
                for (int i = 0; i < K; i++)
                {
                        parent[i] = K;
                }
                dfs1(0);
                //all 3 distinct blocks
                //case 1: it's a path
                for (int i = 0; i < K; i++)
                {
                        tot += 2ll * sz[i] * (subtree[i] - sz[i]) * (n - subtree[i]);
                }
                //case 2: side, go to a ap, then back to a cc it's in OR backward
                for (int i = 0; i < K; i++)
                {
                        if (bcc[i].empty()) continue;
                        for (int v : edge1[i])
                        {
                                if (v == parent[i]) continue;
                                ans += 2ll * (n - subtree[v] - sz[i]) * sz[i];
                        }
                        if (i) tot += 2ll * (subtree[i] - sz[i]) * sz[i];
                }
                //three equal guys
                for (int i = 0; i < K; i++)
                {
                        tot += 1ll * sz[i] * (sz[i] - 1) * (sz[i] - 2);
                }
                //a=b or b=c
                for (int i = 0; i < K; i++)
                {
                        tot += 2ll * sz[i] * (sz[i] - 1) * (n - sz[i]);
                }
                //a=c
                for (int i = 0; i < K; i++)
                {
                        if (bcc[i].empty()) continue;
                        tot += 1ll * sz[i] * (sz[i] - 1) * (edge1[i].size());
                }
                for (int i = 0; i < K; i++)
                {
                        bcc[i].clear();
                        sz[i] = 0;
                        edge1[i].clear();
                        subtree[i] = 0;
                }
                ans += tot;
                K = 0; T = 0; tot = 0;
        }
        // for (int i = 0; i < K; i++)
        // {
        //     for (int v : edge1[i])
        //     {
        //         cerr << i << "->" << v << endl;
        //     }
        //     cerr << "size " << i << " = " << sz[i] << endl;
        // }
        // for (int i = 0; i < K; i++)
        // {
        //         cerr << "subtree " << i << "=" << subtree[i] << endl;
        // }
        //if a -> b must pass through c, then: a -> b -> c is bad; c -> b -> a is bad, c -> a -> b is bad, b -> a -> c
        //three separate components
        cout << ans << '\n';
        //	cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
        return 0;
}

Compilation message

count_triplets.cpp: In function 'int32_t main()':
count_triplets.cpp:264:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("input.in", "r", stdin);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
count_triplets.cpp:265:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("output.out", "w", stdout);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 19192 KB Output is correct
2 Correct 23 ms 19304 KB Output is correct
3 Correct 22 ms 19304 KB Output is correct
4 Correct 22 ms 19400 KB Output is correct
5 Correct 23 ms 19444 KB Output is correct
6 Correct 25 ms 19444 KB Output is correct
7 Incorrect 20 ms 19444 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 19192 KB Output is correct
2 Correct 23 ms 19304 KB Output is correct
3 Correct 22 ms 19304 KB Output is correct
4 Correct 22 ms 19400 KB Output is correct
5 Correct 23 ms 19444 KB Output is correct
6 Correct 25 ms 19444 KB Output is correct
7 Incorrect 20 ms 19444 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 174 ms 37960 KB Output is correct
2 Correct 185 ms 39432 KB Output is correct
3 Correct 238 ms 41564 KB Output is correct
4 Correct 227 ms 43128 KB Output is correct
5 Correct 209 ms 43128 KB Output is correct
6 Correct 278 ms 45968 KB Output is correct
7 Correct 244 ms 45968 KB Output is correct
8 Correct 224 ms 45968 KB Output is correct
9 Correct 228 ms 45968 KB Output is correct
10 Correct 208 ms 45968 KB Output is correct
11 Correct 220 ms 45968 KB Output is correct
12 Correct 163 ms 45968 KB Output is correct
13 Correct 154 ms 45968 KB Output is correct
14 Correct 138 ms 45968 KB Output is correct
15 Correct 156 ms 45968 KB Output is correct
16 Correct 160 ms 45968 KB Output is correct
17 Correct 39 ms 45968 KB Output is correct
18 Correct 34 ms 45968 KB Output is correct
19 Correct 35 ms 45968 KB Output is correct
20 Correct 35 ms 45968 KB Output is correct
21 Correct 41 ms 45968 KB Output is correct
22 Correct 36 ms 45968 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 20 ms 45968 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 238 ms 55476 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 22 ms 55476 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 233 ms 56656 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 19192 KB Output is correct
2 Correct 23 ms 19304 KB Output is correct
3 Correct 22 ms 19304 KB Output is correct
4 Correct 22 ms 19400 KB Output is correct
5 Correct 23 ms 19444 KB Output is correct
6 Correct 25 ms 19444 KB Output is correct
7 Incorrect 20 ms 19444 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 21 ms 19192 KB Output is correct
2 Correct 23 ms 19304 KB Output is correct
3 Correct 22 ms 19304 KB Output is correct
4 Correct 22 ms 19400 KB Output is correct
5 Correct 23 ms 19444 KB Output is correct
6 Correct 25 ms 19444 KB Output is correct
7 Incorrect 20 ms 19444 KB Output isn't correct
8 Halted 0 ms 0 KB -