답안 #647352

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
647352 2022-10-02T09:40:34 Z Lemur95 parentrises (BOI18_parentrises) C++17
50 / 100
30 ms 5360 KB
#include <iostream>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <cstring>
#include <chrono>
#include <cassert>
#include <bitset>
#include <stack>
#include <queue>
#include <iomanip>
#include <random>

#ifdef _MSC_VER
#  include <intrin.h>
#  define __builtin_popcount __popcnt
#  define __builtin_popcountll __popcnt64
#endif

//#pragma GCC optimize("Ofast")
#pragma GCC optimize("Ofast")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define x first
#define y second
#define ld long double
#define ll long long
#define ull unsigned long long
#define us unsigned short
#define lsb(x) ((x) & (-(x)))
#define pii pair <int, int>
#define pll pair <ll, ll>

using namespace std;

mt19937 gen(time(0));
uniform_int_distribution <uint32_t> rng;

//ifstream in("test.in");
//ofstream out("test.out");

const int MOD = 998244353;

// the following namespace includes many useful things
// for solving linear recurrences

namespace recurrences {
    // binary exponentiation
    template <int MOD>
    int lgput(int n, int p) {
        int ans = 1, x = n;

        while (p) {
            if (p & 1)
                ans = 1LL * ans * x % MOD;
            x = 1LL * x * x % MOD;
            p >>= 1;
        }

        return ans;
    }

    // modular integer class
    template <int MOD>
    struct Int {
        int x;

        Int() {
            x = 0;
        }

        Int(int _x) {
            if (_x < 0)
                _x += MOD;
            if (_x >= MOD)
                _x -= MOD;
            x = _x;
        }

        friend ostream& operator << (ostream& os, const Int& X) {
            os << (false ? X.x - MOD : X.x);
            return os;
        }

        Int operator + (const Int& other) const {
            int val = x + other.x;

            return (val >= MOD ? val - MOD : val);
        }

        Int operator += (const Int& other) {
            return *this = *this + other;
        }

        Int operator - (const Int& other) const {
            int val = x - other.x;

            return (val < 0 ? val + MOD : val);
        }
        Int operator -= (const Int& other) {
            return *this = *this - other;
        }

        Int operator * (const Int& other) const {
            return 1LL * x * other.x % MOD;
        }

        Int operator *= (const Int& other) {
            return *this = *this * other;
        }

        Int operator / (const Int& other) const {
            return 1LL * x * other.inv() % MOD;
        }

        bool operator == (const Int& other) const {
            return x == other.x;
        }

        bool operator != (const Int& other) const {
            return x != other.x;
        }

        Int pow(int p) const {
            return lgput<MOD>(x, p);
        }

        int inv() const {
            return lgput<MOD>(x, MOD - 2);
        }
    };

    const bool slow_mult = false;

    int get_primitive_root(int p) {
        vector<int> fact;
        int phi = p - 1, n = phi;
        for (int i = 2; i * i <= n; ++i)
            if (n % i == 0) {
                fact.push_back(i);
                while (n % i == 0)
                    n /= i;
            }
        if (n > 1)
            fact.push_back(n);

        for (int res = 2; res <= p; ++res) {
            bool ok = true;
            for (size_t i = 0; i < fact.size() && ok; ++i)
                ok &= lgput<MOD>(res, phi / fact[i]) != 1;
            if (ok) {
                return res;
            }
        }
        return -1;
    }

    int primitive_root = get_primitive_root(MOD);

    int get_smallest_power(int n) {
        int p = 1;
        while (p < n)
            p <<= 1;
        return p;
    }

    bool calcW = true;

    Int<MOD> valw[30], invvalw[30];

    // modular 
    template <typename T>
    struct Poly {
        vector <T> p;

        Poly() {
            p.clear();
        }

        Poly(vector <T> values) {
            p = values;
        }

        Poly(int val) {
            p = { val };
        }

        T& operator [] (int index) {
            assert(index < (int)p.size());
            return p[index];
        }

        void setDegree(int deg) {
            p.resize(deg + 1);
        }

        int deg() const {
            return p.size() - 1;
        }

        friend ostream& operator << (ostream& os, const Poly& P) {
            for (auto& i : P.p)
                os << i << " ";
            return os;
        }

        bool operator == (const Poly& other) const {
            if (deg() != other.deg())
                return 0;

            for (int i = 0; i <= deg(); i++) {
                if (p[i] != other.p[i])
                    return 0;
            }

            return 1;
        }

        Poly operator + (const Poly& other) const {
            Poly sum(p);

            sum.setDegree(max(deg(), other.deg()));

            for (int i = 0; i <= other.deg(); i++)
                sum[i] += other.p[i];

            return sum;
        }

        // add
        Poly operator += (const Poly& other) {
            return *this = *this + other;
        }

        Poly operator - (const Poly& other) const {
            Poly dif(p);

            dif.setDegree(max(deg(), other.deg()));

            for (int i = 0; i <= other.deg(); i++)
                dif[i] -= other.p[i];

            return dif;
        }

        // substract
        Poly operator -= (const Poly& other) {
            return *this = *this - other;
        }

        // scalar multiplication
        Poly operator * (const T& other) const {
            Poly mult(*this);

            for (auto& i : mult.p)
                i *= other;

            return mult;
        }
        // scalar multiplication
        Poly operator *= (const T& other) {
            return *this = *this * other;
        }

        // scalar division
        Poly operator / (const T& other) const {
            Poly mult(*this);
            Int<MOD> val = other.inv();

            for (auto& i : mult.p)
                i *= val;

            return mult;
        }

        // scalar division
        Poly operator /= (const T& other) {
            return *this = *this / other;
        }

        Poly fft(bool invert) {
            Poly Ans(p);

            Int<MOD> root(primitive_root);

            if (calcW) {
                calcW = false;

                for (int i = 0; i < 30; i++) {
                    valw[i] = root.pow((MOD - 1) >> (i + 1));
                    invvalw[i] = valw[i].inv();
                }
            }

            int ind = 0, n = deg();
            for (int i = 1; i < n; i++) {
                int b;
                for (b = n / 2; ind & b; b >>= 1)
                    ind ^= b;
                ind ^= b;

                if (i < ind)
                    swap(Ans[i], Ans[ind]);
            }

            for (int l = 2, p = 0; l <= n; l <<= 1, p++) {
                Int<MOD> bw(!invert ? valw[p] : invvalw[p]);

                for (int i = 0; i < n; i += l) {
                    Int<MOD> w(1);

                    for (int j = 0; j < l / 2; j++) {
                        int i1 = i + j, i2 = i + j + l / 2;
                        Int<MOD> val1(Ans[i1]), val2(Ans[i2] * w);
                        Ans[i1] = val1 + val2;
                        Ans[i2] = val1 - val2;
                        w *= bw;
                    }
                }
            }

            if (invert) {
                Int<MOD> inv = Int<MOD>(n).inv();

                for (int i = 0; i < n; i++)
                    Ans[i] *= inv;
            }

            return Ans;
        }

        // multiplies 2 polynomials
        Poly operator * (const Poly& other) const {
            if (!primitive_root) { // for small sizes, use naive multiplication
                Poly mult;
                mult.setDegree(deg() + other.deg());

                for (int i = 0; i <= deg(); i++) {
                    for (int j = 0; j <= other.deg(); j++)
                        mult[i + j] += p[i] * other.p[j];
                }

                return mult;
            }
            Poly A(p), B(other.p);

            int sz = max(get_smallest_power(A.deg() + 1), get_smallest_power(B.deg() + 1)) * 2;

            A.setDegree(sz), B.setDegree(sz);

            A = A.fft(0);
            B = B.fft(0);

            for (int i = 0; i < sz; i++)
                A[i] *= B[i];

            A = A.fft(1);

            A.setDegree(deg() + other.deg());

            return A;
        }

        // p mod q
        Poly operator % (const Poly& other) const {
            int d = deg() - other.deg();

            if (d < 0)
                return *this;

            if (false) {
                Poly R2(p);
                for (int i = deg(); i >= other.deg(); i--) {
                    R2 -= (other * R2[i] / other.p[other.deg()]).shift(i - other.deg());
                }

                R2.setDegree(other.deg() - 1);

                //return R;
            }

            Poly A, B = other;

            for (int i = 0; i <= d; i++) {
                A.p.push_back(p[deg() - i]);
            }

            for (int i = 0; i <= B.deg() / 2; i++)
                swap(B[i], B[B.deg() - i]);

            Poly C = A * B.inverse(d);

            C.setDegree(d);

            for (int i = 0; i <= d / 2; i++)
                swap(C[i], C[d - i]);

            Poly R = *this - other * C;

            R.setDegree(other.deg() - 1);

            return R;
        }

        // *x^n
        Poly shift(int index) {
            Poly q = p;
            q.setDegree(deg() + index);
            for (int i = deg(); i >= 0; i--)
                q[i + index] = q[i];
            for (int i = index - 1; i >= 0; i--)
                q[i] = T(0);
            return q;
        }

        // derivate of P
        Poly derivative() {
            Poly D;

            D.setDegree(deg() - 1);

            for (int i = 1; i <= deg(); i++)
                D[i - 1] = T(i) * p[i];

            return D;
        }

        // integral of P
        Poly integral() {
            Poly I;

            I.setDegree(deg() + 1);

            for (int i = 0; i <= deg(); i++)
                I[i + 1] = p[i] / T(i + 1);

            return I;
        }

        // P^-1 mod x^n
        Poly inverse(int n) {
            Poly Inv(p[0].inv()), two(2);

            int power = 1;

            while ((power / 2) <= n) {
                Poly A;
                for (int i = 0; i <= power; i++)
                    A.p.push_back((i <= deg() ? p[i] : 0));

                Inv = Inv * (two - A * Inv);
                Inv.setDegree(power);

                power <<= 1;
            }

            Inv.setDegree(n);

            return Inv;
        }

        // log(P) mod x^n
        Poly log(int n) {
            Poly Log(derivative());

            Log = Log * this->inverse(n);

            return Log.integral();
        }

        // e^P mod x^n
        Poly exp(int n) {
            Poly Exp(1);

            int power = 1;

            while ((power / 2) <= n) {
                Poly A(p);
                A.setDegree(power);
                Exp += Exp * A - Exp * Exp.log(power);
                Exp.setDegree(power);
                power <<= 1;
            }

            Exp.setDegree(n);
            return Exp;
        }

        // p^power mod mod, where mod is a polynomial
        Poly pow(uint64_t power, Poly mod) {
            Poly Pow(1), X(p);

            while (power) {
                if (power & 1)
                    Pow = Pow * X % mod;
                X = X * X % mod;
                power >>= 1;
            }

            return Pow;
        }

        Poly pow(uint64_t power) {
            Poly Pow(1), X(p);

            while (power) {
                if (power & 1)
                    Pow = Pow * X;
                X = X * X;
                power >>= 1;
            }

            return Pow;
        }
    };

    // berlekamp-massey algorithm
    template <int MOD>
    Poly<Int<MOD>> berlekamp_massey(vector <Int<MOD>> values) {
        Poly<Int<MOD>> P(values), B, C, Pol(-1);
        int n = values.size(), lst = -1;
        Int<MOD> lstError;

        for (int i = 0; i < n; i++) {
            Int<MOD> error = P[i];

            for (int j = 1; j <= C.deg() + 1; j++)
                error -= C[j - 1] * P[i - j];

            if (error == Int<MOD>(0))
                continue;

            if (lst == -1) {
                C = C.shift(i + 1);
                lst = i;
                lstError = P[i];
                continue;
            }

            Poly<Int<MOD>> D = (Pol * error / lstError);
            Poly<Int<MOD>> t = C;

            // instead of shifting D with i - lst - 1 positions
            // do the substraction on the last D.deg() coeficients
            if (i - lst - 1 + D.deg() > C.deg())
                C.setDegree(i - lst - 1 + D.deg());

            for (int j = 0; j <= D.deg(); j++)
                C[j + i - lst - 1] -= D[j];

            if (i - t.deg() > lst - B.deg()) {
                B = t;
                Pol = B;
                Pol = Pol.shift(1);
                Pol[0] = Int<MOD>(-1);
                lst = i;
                lstError = error;
            }

            //C -= D;
        }

        return C;
    }

    // find kth term based on terms of recurrence
    // assuming first term has index 1
    template <int MOD>
    Int<MOD> kth_term(vector <Int<MOD>> v, uint64_t k) {
        vector <Int<MOD>> x = { Int<MOD>(0), Int<MOD>(1) };
        Poly<Int<MOD>> CP = berlekamp_massey<MOD>(v);
        Poly<Int<MOD>> X(x);

        // characteristic polynomial is of form
        // x^n - sigma(i = 1..n, c[i] * x^(n-i))
        // that's why we need to reverse the recurrence
        // from berlekamp-massey

        CP *= Int<MOD>(-1);
        CP = CP.shift(1);
        for (int i = 0; i <= CP.deg() / 2; i++)
            swap(CP[i], CP[CP.deg() - i]);
        CP[CP.deg()] = 1;

        X = X.pow(k - 1, CP);

        Int<MOD> term(0);

        for (int i = 0; i <= X.deg(); i++)
            term += X[i] * v[i];

        return term;
    }

    template <int MOD>
    void berlekamp_massey_test() {
        int n;
        vector<Int<MOD>> v;

        cin >> n;
        for (int i = 0; i < n; i++) {
            int x;
            cin >> x;
            v.push_back(x);
        }

        Poly<Int<MOD>> rec = berlekamp_massey<MOD>(v);

        // sanity check

        for (int k = rec.deg() + 2; k <= 30; k++) {
            Int<MOD> val(0);

            for (int i = k - rec.deg() - 1; i < k; i++)
                val += v[i - 1] * rec[k - 1 - i];

            assert(val == kth_term(v, k));
            if (k > n)
                v.push_back(val);
        }

        uint64_t k;
        cin >> k;
        cout << kth_term<MOD>(v, k) << "\n";
    }

    template <int MOD>
    void berlekamp_massey_speed_test() {
        int n;
        vector<Int<MOD>> v;

        n = 1000;
        for (int i = 0; i < n; i++) {
            int x;
            //cin >> x;
            x = rng(gen);
            v.push_back(x);
        }

        ld t1 = clock();

        for (int k = 1; k <= 200; k++)
            kth_term<MOD>(v, k);

        ld t2 = clock();

        cout << (t2 - t1) / CLOCKS_PER_SEC << "s\n";
    }

    template <int MOD>
    void inverse_test() {
        int n;
        cin >> n;

        vector <Int<MOD>> v;
        for (int i = 1; i <= n; i++) {
            int x;
            cin >> x;

            v.push_back(Int<MOD>(x));
        }

        Poly<Int<MOD>> P(v), Inv, Exp, Log;
        int deg = 10;

        Inv = P.inverse(deg);

        cout << "Inverse: " << Inv << "\n";

        Exp = P.exp(deg);

        cout << "Exponential: " << Exp << "\n";

        Log = P.log(deg);

        cout << "Logarithm: " << Log << '\n';
    }
};

int T;

template <typename T>
T gcd(T a, T b) {
    if (!a)
        return b;
    return gcd<T>(b % a, a);
}

using namespace recurrences;

ifstream in("popcorn.in");
ofstream out("popcorn.out");

const int K = (int)1e6 + 5;

int p, n;

string s, ans;

bool check(string s, string ans) {
    int a = 0, b = 0;
    for (int i = 0; i < n; i++) {
        int val = (s[i] == '(' ? 1 : -1);
        if (ans[i] == 'G')
            a += val, b += val;
        else if (ans[i] == 'R')
            a += val;
        else
            b += val;

        if (a < 0 || b < 0)
            return 0;
    }

    return a == 0 && b == 0;
}

bool testing = false;
const int N = 10;

void solve(int test) {
    if (p == 1) {
        if (testing) {
            n = N;
            s = "";
            for (int i = 0; i < n; i++)
                s += ((test & (1 << i)) != 0 ? '(' : ')');

            cout << test << " " << s << "\n";
        }
        else {
            cin >> s;
            n = s.size();
        }

        ans = "";
        for (int i = 0; i < n; i++)
            ans += ' ';

        int a = 0, b = 0;
        for (int i = 0; i < n; i++) {
            if (s[i] == '(') {
                ans[i] = 'G';
                a++, b++;
            }
            else {
                if (a > b) {
                    ans[i] = 'R';
                    a--;
                }
                else {
                    ans[i] = 'B';
                    b--;
                }
            }

            if (a < 0 || b < 0) {
                cout << "impossible\n";
                return;
            }
        }

        if (a == 0 && b == 0) {
            cout << ans << "\n";
            return;
        }

        for (int i = n - 1; i >= 0; i--) {
            if (s[i] == '(') {
                if (a > b) {
                    ans[i] = 'B';
                    a--;
                }
                else {
                    ans[i] = 'R';
                    b--;
                }
            }
            else {
                if (ans[i] == 'R' && b)
                    b--, ans[i] = 'G';
                if (ans[i] == 'B' && a)
                    a--, ans[i] = 'G';
            }

            if (a < 0 || b < 0) {
                cout << "impossible\n";
                return;
            }

            if (a == 0 && b == 0) {
                if (!check(s, ans)) {
                    cout << "impossible\n";
                    return;
                }
                cout << ans << "\n";
                return;
            }
        }

        cout << "impossible\n";
    }
}

int main() {
    ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    srand(time(0));

    T = 1;
    cin >> p;

    if (!testing)
        cin >> T;
    else
        T = (1 << N);

    for (int t = 1; t <= T; t++) {
        solve(t);
    }

    return 0;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 3 ms 468 KB Output is correct
17 Correct 3 ms 988 KB Output is correct
18 Correct 3 ms 468 KB Output is correct
19 Correct 3 ms 724 KB Output is correct
20 Correct 3 ms 988 KB Output is correct
21 Correct 22 ms 2104 KB Output is correct
22 Correct 30 ms 5344 KB Output is correct
23 Correct 16 ms 2400 KB Output is correct
24 Correct 23 ms 3180 KB Output is correct
25 Correct 27 ms 5360 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 212 KB Unexpected end of file - int32 expected
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 212 KB Unexpected end of file - int32 expected
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 212 KB Unexpected end of file - int32 expected
2 Halted 0 ms 0 KB -