답안 #64623

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
64623 2018-08-05T05:18:48 Z qkxwsm 철인 이종 경기 (APIO18_duathlon) C++17
31 / 100
346 ms 63776 KB
/*
PROG: source
LANG: C++11
_____
.'     '.
/  0   0  \
|     ^     |
|  \     /  |
\  '---'  /
'._____.'
*/
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;

struct chash
{
        int operator()(int x) const
        {
                x ^= (x >> 20) ^ (x >> 12);
                return x ^ (x >> 7) ^ (x >> 4);
        }
        int operator()(long long x) const
        {
                return x ^ (x >> 32);
        }
};

template<typename T> using orderedset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T> using hashtable = gp_hash_table<T, T, chash>;

template<class T>
void readi(T &x)
{
        T input = 0;
        bool negative = false;
        char c = ' ';
        while (c < '-')
        {
                c = getchar();
        }
        if (c == '-')
        {
                negative = true;
                c = getchar();
        }
        while (c >= '0')
        {
                input = input * 10 + (c - '0');
                c = getchar();
        }
        if (negative)
        {
                input = -input;
        }
        x = input;
}
template<class T>
void printi(T output)
{
        if (output == 0)
        {
                putchar('0');
                return;
        }
        if (output < 0)
        {
                putchar('-');
                output = -output;
        }
        int aout[20];
        int ilen = 0;
        while(output)
        {
                aout[ilen] = ((output % 10));
                output /= 10;
                ilen++;
        }
        for (int i = ilen - 1; i >= 0; i--)
        {
                putchar(aout[i] + '0');
        }
        return;
}
template<class T>
void ckmin(T &a, T b)
{
        a = min(a, b);
}
template<class T>
void ckmax(T &a, T b)
{
        a = max(a, b);
}
template<class T>
T normalize(T x, T mod = 1000000007)
{
        return (((x % mod) + mod) % mod);
}
long long randomizell(long long mod)
{
        return ((1ll << 45) * rand() + (1ll << 30) * rand() + (1ll << 15) * rand() + rand()) % mod;
}
int randomize(int mod)
{
        return ((1ll << 15) * rand() + rand()) % mod;
}

#define y0 ___y0
#define y1 ___y1
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define PF push_front
#define LB lower_bound
#define UB upper_bound
#define fi first
#define se second
#define debug(x) cerr << #x << " = " << x << endl;

const long double PI = 4.0 * atan(1.0);
const long double EPS = 1e-10;

#define MAGIC 347
#define SINF 10007
#define CO 1000007
#define INF 1000000007
#define BIG 1000000931
#define LARGE 1696969696967ll
#define GIANT 2564008813937411ll
#define LLINF 2696969696969696969ll
#define MAXN 200013

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<ld, ld> pdd;

int N, M, T, K;
vector<int> edge[MAXN], edge1[MAXN];
int sz[MAXN];
vector<pii> bridge;
vector<pii> edges;
bool ap[MAXN];
vector<int> bcc[MAXN];
int id[MAXN], aid[MAXN];
int parent[MAXN];
int subtree[MAXN];
int disc[MAXN], low[MAXN];
int dsu[MAXN], dsz[MAXN];
vector<int> nodes[MAXN];
bool seen[MAXN];
ll ans = 0, tot = 0;

int find_parent(int u)
{
        return (u == dsu[u] ? u : dsu[u] = find_parent(dsu[u]));
}
void merge(int u, int v)
{
        u = find_parent(u);
        v = find_parent(v);
        if (u == v) return;
        if (dsz[u] > dsz[v])
        {
                swap(u, v);
        }
        dsz[v] += dsz[u];
        dsz[u] = 0;
        dsu[u] = v;
        return;
}
void dfs(int u, bool head = false)
{
        disc[u] = T;
        low[u] = T;
        seen[u] = true;
        T++;
        int children = 0;
        for (int v : edge[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                if (seen[v])
                {
                        ckmin(low[u], low[v]);
                        continue;
                }
                children++;
                parent[v] = u;
                edges.PB({u, v});
                dfs(v);
                ckmin(low[u], low[v]);
                if (low[v] >= disc[u])
                {
                        if (low[v] != disc[u])
                        {
                                bridge.PB({u, v});
                        }
                        if (!head)
                        {
                                ap[u] = true;
                                while(edges.back() != MP(u, v))
                                {
                                        bcc[K].PB(edges.back().fi);
                                        bcc[K].PB(edges.back().se);
                                        edges.pop_back();
                                }
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                                K++;
                        }
                }
                if (head)
                {
                        if (children > 1)
                        {
                                ap[u] = true;
                        }
                        while(edges.back() != MP(u, v))
                        {
                                bcc[K].PB(edges.back().fi);
                                bcc[K].PB(edges.back().se);
                                edges.pop_back();
                        }
                        bcc[K].PB(edges.back().fi);
                        bcc[K].PB(edges.back().se);
                        edges.pop_back();
                        K++;
                }
        }
}
void dfs1(int u)
{
        subtree[u] = sz[u];
        for (int v : edge1[u])
        {
                if (v == parent[u])
                {
                        continue;
                }
                parent[v] = u;
                dfs1(v);
                subtree[u] += subtree[v];
        }
        return;
}

int32_t main()
{
        ios_base::sync_with_stdio(0);
        srand(time(0));
        //	cout << fixed << setprecision(10);
        //	cerr << fixed << setprecision(10);
        if (fopen("input.in", "r"))
        {
                freopen ("input.in", "r", stdin);
                freopen ("output.out", "w", stdout);
        }
        cin >> N >> M;
        for (int i = 0; i < N; i++)
        {
                dsu[i] = i;
                dsz[i] = i;
        }
        for (int i = 0; i < M; i++)
        {
                int u, v;
                cin >> u >> v;
                u--; v--;
                edge[u].PB(v);
                edge[v].PB(u);
                merge(u, v);
        }
        for (int i = 0; i < N; i++)
        {
                parent[i] = N;
        }
        for (int i = 0; i < N; i++)
        {
                nodes[find_parent(i)].PB(i);
        }
        for (int cc = 0; cc < N; cc++)
        {
                if (find_parent(cc) != cc)
                {
                        continue;
                }
                int n = nodes[cc].size();
                dfs(cc, 1);
                for (int i = 0; i < K; i++)
                {
                        sort(bcc[i].begin(), bcc[i].end());
                        bcc[i].erase(unique(bcc[i].begin(), bcc[i].end()), bcc[i].end());
                        // cerr << "bcc # " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                id[u] = i;
                                if (!ap[u])
                                {
                                        sz[i]++;
                                }
                        }
                        // cerr << endl;
                }
                for (int i = 0; i < n; i++)
                {
                        int u = nodes[cc][i];
                        if (ap[u])
                        {
                                aid[u] = K;
                                sz[K] = 1;
                                K++;
                                // cerr << "ap " << i << " id " << K - 1 << endl;
                        }
                }
                for (int i = 0; i < K; i++)
                {
                        // cerr << "bcc " << i << ":";
                        for (int u : bcc[i])
                        {
                                // cerr << ' ' << u;
                                if (ap[u])
                                {
                                        edge1[i].PB(aid[u]);
                                        edge1[aid[u]].PB(i);
                                        // cerr << "edge1 " << aid[u] << ' ' << i << endl;
                                }
                        }
                        // cerr << endl;
                }
                for (int i = 0; i < K; i++)
                {
                        parent[i] = K;
                }
                dfs1(0);
                //three different guys
                for (int i = 0; i < K; i++)
                {
                        tot += 1ll * sz[i] * (n - sz[i]) * (n - sz[i] - 1);
                        for (int v : edge1[i])
                        {
                                if (v == parent[i]) continue;
                                tot -= 1ll * sz[i] * (subtree[v]) * (subtree[v] - 1);
                        }
                        tot -= 1ll * sz[i] * (n - subtree[i]) * (n - subtree[i] - 1);
                        // tot += 2ll * sz[i] * (n - subtree[i]) * (subtree[i] - sz[i]);
                }
                // cerr << "tot = " << tot << endl;
                //three equal guys
                for (int i = 0; i < K; i++)
                {
                        tot += 1ll * sz[i] * (sz[i] - 1) * (sz[i] - 2);
                }
                //a=b or b=c
                for (int i = 0; i < K; i++)
                {
                        tot += 2ll * sz[i] * (sz[i] - 1) * (n - sz[i]);
                }
                //a=c
                for (int i = 0; i < K; i++)
                {
                        if (bcc[i].empty()) continue;
                        tot += 1ll * sz[i] * (sz[i] - 1) * (edge1[i].size());
                }
                for (int i = 0; i < K; i++)
                {
                        bcc[i].clear();
                        sz[i] = 0;
                        edge1[i].clear();
                        subtree[i] = 0;
                }
                ans += tot;
                K = 0; T = 0; tot = 0;
        }
        // for (int i = 0; i < K; i++)
        // {
        //     for (int v : edge1[i])
        //     {
        //         cerr << i << "->" << v << endl;
        //     }
        //     cerr << "size " << i << " = " << sz[i] << endl;
        // }
        // for (int i = 0; i < K; i++)
        // {
        //         cerr << "subtree " << i << "=" << subtree[i] << endl;
        // }
        //if a -> b must pass through c, then: a -> b -> c is bad; c -> b -> a is bad, c -> a -> b is bad, b -> a -> c
        //three separate components
        cout << ans << '\n';
        //	cerr << "time elapsed = " << (clock() / (CLOCKS_PER_SEC / 1000)) << " ms" << endl;
        return 0;
}

Compilation message

count_triplets.cpp: In function 'int32_t main()':
count_triplets.cpp:264:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("input.in", "r", stdin);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~
count_triplets.cpp:265:25: warning: ignoring return value of 'FILE* freopen(const char*, const char*, FILE*)', declared with attribute warn_unused_result [-Wunused-result]
                 freopen ("output.out", "w", stdout);
                 ~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 19 ms 19192 KB Output is correct
2 Correct 19 ms 19252 KB Output is correct
3 Correct 22 ms 19252 KB Output is correct
4 Correct 21 ms 19424 KB Output is correct
5 Correct 18 ms 19424 KB Output is correct
6 Correct 23 ms 19480 KB Output is correct
7 Incorrect 22 ms 19480 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 19 ms 19192 KB Output is correct
2 Correct 19 ms 19252 KB Output is correct
3 Correct 22 ms 19252 KB Output is correct
4 Correct 21 ms 19424 KB Output is correct
5 Correct 18 ms 19424 KB Output is correct
6 Correct 23 ms 19480 KB Output is correct
7 Incorrect 22 ms 19480 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 155 ms 36740 KB Output is correct
2 Correct 179 ms 36740 KB Output is correct
3 Correct 264 ms 37628 KB Output is correct
4 Correct 192 ms 39156 KB Output is correct
5 Correct 238 ms 39156 KB Output is correct
6 Correct 293 ms 41276 KB Output is correct
7 Correct 184 ms 41276 KB Output is correct
8 Correct 193 ms 41276 KB Output is correct
9 Correct 219 ms 41276 KB Output is correct
10 Correct 224 ms 41276 KB Output is correct
11 Correct 173 ms 41276 KB Output is correct
12 Correct 160 ms 41276 KB Output is correct
13 Correct 167 ms 41276 KB Output is correct
14 Correct 197 ms 41276 KB Output is correct
15 Correct 164 ms 41276 KB Output is correct
16 Correct 169 ms 41276 KB Output is correct
17 Correct 37 ms 41276 KB Output is correct
18 Correct 34 ms 41276 KB Output is correct
19 Correct 36 ms 41276 KB Output is correct
20 Correct 31 ms 41276 KB Output is correct
21 Correct 35 ms 41276 KB Output is correct
22 Correct 41 ms 41276 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 24 ms 41276 KB Output is correct
2 Correct 28 ms 41276 KB Output is correct
3 Correct 26 ms 41276 KB Output is correct
4 Correct 24 ms 41276 KB Output is correct
5 Correct 23 ms 41276 KB Output is correct
6 Correct 24 ms 41276 KB Output is correct
7 Correct 27 ms 41276 KB Output is correct
8 Correct 24 ms 41276 KB Output is correct
9 Correct 28 ms 41276 KB Output is correct
10 Correct 27 ms 41276 KB Output is correct
11 Correct 23 ms 41276 KB Output is correct
12 Correct 27 ms 41276 KB Output is correct
13 Correct 24 ms 41276 KB Output is correct
14 Correct 25 ms 41276 KB Output is correct
15 Correct 25 ms 41276 KB Output is correct
16 Correct 23 ms 41276 KB Output is correct
17 Correct 27 ms 41276 KB Output is correct
18 Correct 26 ms 41276 KB Output is correct
19 Correct 23 ms 41276 KB Output is correct
20 Correct 23 ms 41276 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 263 ms 41276 KB Output is correct
2 Correct 303 ms 41276 KB Output is correct
3 Correct 281 ms 42048 KB Output is correct
4 Correct 271 ms 43216 KB Output is correct
5 Correct 275 ms 44380 KB Output is correct
6 Correct 342 ms 57672 KB Output is correct
7 Correct 338 ms 57672 KB Output is correct
8 Correct 346 ms 57672 KB Output is correct
9 Correct 263 ms 57672 KB Output is correct
10 Correct 265 ms 57672 KB Output is correct
11 Correct 232 ms 57672 KB Output is correct
12 Correct 180 ms 57672 KB Output is correct
13 Correct 232 ms 57672 KB Output is correct
14 Correct 238 ms 57672 KB Output is correct
15 Correct 146 ms 57672 KB Output is correct
16 Correct 138 ms 57672 KB Output is correct
17 Correct 210 ms 57672 KB Output is correct
18 Correct 124 ms 57672 KB Output is correct
19 Correct 143 ms 59140 KB Output is correct
20 Correct 129 ms 60256 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 23 ms 60256 KB Output is correct
2 Correct 22 ms 60256 KB Output is correct
3 Incorrect 20 ms 60256 KB Output isn't correct
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 270 ms 62152 KB Output is correct
2 Correct 285 ms 63776 KB Output is correct
3 Incorrect 222 ms 63776 KB Output isn't correct
4 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 19 ms 19192 KB Output is correct
2 Correct 19 ms 19252 KB Output is correct
3 Correct 22 ms 19252 KB Output is correct
4 Correct 21 ms 19424 KB Output is correct
5 Correct 18 ms 19424 KB Output is correct
6 Correct 23 ms 19480 KB Output is correct
7 Incorrect 22 ms 19480 KB Output isn't correct
8 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 19 ms 19192 KB Output is correct
2 Correct 19 ms 19252 KB Output is correct
3 Correct 22 ms 19252 KB Output is correct
4 Correct 21 ms 19424 KB Output is correct
5 Correct 18 ms 19424 KB Output is correct
6 Correct 23 ms 19480 KB Output is correct
7 Incorrect 22 ms 19480 KB Output isn't correct
8 Halted 0 ms 0 KB -