Submission #638182

# Submission time Handle Problem Language Result Execution time Memory
638182 2022-09-04T20:48:02 Z blue Catfish Farm (IOI22_fish) C++17
78 / 100
1000 ms 71900 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using pii = pair<int, int>;
using vpii = vector<pii>;
using vvpii = vector<vpii>;
using vi = vector<int>;
using vvi = vector<vi>;
using pll = pair<ll, ll>;
using vpll = vector<pll>;
#define sz(x) int(x.size())
 
const int lg = 18;
 
void selfmax(ll& a, ll b)
{
	a = max(a, b);
}
 
const int maxN = 100'000;
 
vpll fish[1 + maxN];
vll fishpref[1 + maxN];
vll tot(1 + maxN, 0);
 
int maxind(int i, int h)
{
	//return max ind of col i so that corresponding height is <= h
	int b = -1;
	for(int e = lg; e >= 0; e--)
	{
		if(b + (1<<e) < sz(fish[i]) && fish[i][b + (1<<e)].first <= h)
			b += (1<<e);
	}
	return b;
}
 
ll htwt(int i, int h)
{
	int j = maxind(i, h);
	if(j == -1)
		return 0;
	else
		return fishpref[i][j];
}
 
ll invhtwt(int i, int h)
{
	return tot[i] - htwt(i, h-1);
}
 
ll max_weights(int N, int M, vi X, vi Y, vi W)
{
	for(int j = 0; j < M; j++)
	{
		X[j]++;
		Y[j]++;
	}
 
	vpll fish[1+N];
	vll fishpref[1+N];

	vpii fishbyY[1+N];
 
	for(int j = 0; j < M; j++)
	{
		// fish[X[j]].push_back({Y[j], W[j]});
		fishbyY[Y[j]].push_back({X[j], W[j]});
		tot[X[j]] += W[j];
	}

	for(int y = 0; y <= N; y++)
		for(pii z : fishbyY[y])
			fish[z.first].push_back({y, z.second});
 
	for(int r = 1; r <= N; r++)
	{
		fish[r].push_back({N+1, 0});
		// sort(fish[r].begin(), fish[r].end());
 
		if(fish[r][0].first != 1)
		{
			fish[r].insert(fish[r].begin(), {1, 0});
		}
 
		fishpref[r] = vll(sz(fish[r]));
		for(int i = 0; i < sz(fishpref[r]); i++)
		{
			fishpref[r][i] = (i == 0 ? 0 : fishpref[r][i-1]) + fish[r][i].second;
		}
	}
 
	fish[0] = vpll{{0, 0}};
	fishpref[0] = vll{0};
 
	vvll inc(1+N), dec(1+N);
	vvll incpref(1+N), decpref(1+N); //pref inc dec mx
	inc[0] = dec[0] = vll{0};
 
	// cerr << "done\n";
 
	for(int r = 1; r <= N; r++)
	{
		incpref[r-1] = inc[r-1];
		decpref[r-1] = dec[r-1];
		for(int i = 1; i < sz(fish[r-1]); i++)
		{
			incpref[r-1][i] = max(incpref[r-1][i-1], inc[r-1][i]);
			decpref[r-1][i] = max(decpref[r-1][i-1], dec[r-1][i]);
		}
 
 
		inc[r] = dec[r] = vll(sz(fish[r]), 0);
 
 
 
 
 
 
		vll Csuff;
		if(r >= 2)
		{
			Csuff = vll(sz(fish[r-2]));

			int pi = sz(fish[r-1])-1;
			ll pwt = tot[r-1];

			for(int j = sz(fish[r-2])-1; j >= 0; j--)
			{
				while(pi >= 0 && fish[r-1][pi].first > fish[r-2][j].first - 1)
				{
					pwt -= fish[r-1][pi].second;
					pi--;
				}

				// Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + htwt(r-1, fish[r-2][j].first - 1);
				Csuff[j] = max(inc[r-2][j], dec[r-2][j]) + pwt;
				if(j+1 < sz(fish[r-2]))
					selfmax(Csuff[j], Csuff[j+1]);
			}
		}
 
 
		ll Dmx = 0;
		ll Did = -1;

		int ppi = -1;
 		int qi = -1;
 		ll qwt = 0;
 
		for(int i = 0; i < sz(fish[r]); i++)
		{
			ll basic = 0;
 
			ll Bcatch = 0;
			int Bk = -1;

			while(qi+1 < sz(fish[r-1]) && fish[r-1][qi+1].first <= fish[r][i].first - 1)
			{
				qi++;
				qwt += fish[r-1][qi].second;
			}

			// ll prevpwt = htwt(r-1, fish[r][i].first - 1);
			// cerr << prevpwt << " " << qwt << '\n';
			// assert(prevpwt == qwt);
			ll prevpwt = qwt;
 
			ll constD = -(tot[r-1] - prevpwt) + tot[r-1];
 
			if(r >= 2)
			{
				//A
				selfmax(basic, max(inc[r-2][0], dec[r-2][0]) + prevpwt);
 
 
 
 
 				while(ppi+1 < sz(fish[r-2]) && fish[r-2][ppi+1].first <= fish[r][i].first)
 					ppi++;
				int ploci = ppi;
 
				//B
				/*for(int j = 0; j <= ploci; j++)
				{
					// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					ll medcatch = 0;
					for(int k = 0; k < sz(fish[r-1]); k++)
						if(fish[r-1][k].first <= fish[r][i].first - 1)
							medcatch += fish[r-1][k].second;
 
					selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				}*/
				while(Bk+1 < sz(fish[r-1]) && fish[r-1][Bk+1].first <= fish[r][i].first - 1)
				{
					Bk++;
					Bcatch += fish[r-1][Bk].second;
				}
				selfmax(basic, Bcatch + max(incpref[r-2][ploci], decpref[r-2][ploci]));
				// for(int j = 0; j <= ploci; j++)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
					
 
				// 	// selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + Bcatch);
				// 	selfmax(basic, )
				// }
 
 
				//C
				// for(int j = sz(fish[r-2])-1; j > ploci; j--)
				// {
				// 	// cerr << "j = " << j << " out of (exc) " << sz(fish[r-2]) << '\n';
				// 	ll medcatch = 0;
				// 	for(int k = 0; k < sz(fish[r-1]); k++)
				// 		if(fish[r-1][k].first <= fish[r-2][j].first - 1)
				// 			medcatch += fish[r-1][k].second;
 
				// 	selfmax(basic, max(inc[r-2][j], dec[r-2][j]) + medcatch);
				// }
 
				if(ploci+1 < sz(fish[r-2]))
				{
					// cerr << ploci << " : " << sz(fish[r-2]) << '\n';
					selfmax(basic, Csuff[ploci+1]);
				}
			}
 
			selfmax(inc[r][i], basic);
			selfmax(dec[r][i], basic);
 
			//type D transition
 
			while(Did+1 < sz(fish[r-1]) && fish[r-1][Did+1].first <= fish[r][i].first)
			{
				Did++;
				Dmx = max(Dmx, inc[r-1][Did] - (Did >= 1 ? fishpref[r-1][Did-1] : 0));
			}
 
			// for(int j = 0; j < sz(fish[r-1]) && fish[r-1][j].first <= fish[r][i].first; j++)
			// {
			// 	// cerr << "j = " << j << " , " << fish[r-1][j].first-1 << '\n';
			// 	// ll ext = 0;
				
			// 	// cerr << "case 1\n";
			// 	// for(int k = j; k < sz(fish[r-1]); k++)
			// 	// {
			// 	// 	if(fish[r-1][k].first <= fish[r][i].first - 1)
			// 	// 		ext += fish[r-1][k].second;
			// 	// }
			// 	// if(j >= 1)
			// 	// 	ext -= fishpref[r-1][j-1];
			// 	// ll ext = -invhtwt(r-1, fish[r][i].first);
 
			// 	selfmax(inc[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// 	selfmax(dec[r][i], inc[r-1][j] - (j >= 1 ? fishpref[r-1][j-1] : 0) + constD);
			// }
			selfmax(inc[r][i], Dmx + constD);
			selfmax(dec[r][i], Dmx + constD);
 
		}
 
		int j = sz(fish[r-1]);
		ll bestval = -1'000'000'000'000'000'000LL;

		int ri = sz(fish[r]);
		ll rwt = 0;
 
 
		for(int i = sz(fish[r])-1; i >= 0; i--)
		{
 			while(j-1 >= 0 && fish[r-1][j-1].first > fish[r][i].first)
 			{
 				j--;
 				while(ri-1 >= 0 && fish[r][ri-1].first >= fish[r-1][j].first)
 				{
 					ri--;
 					rwt += fish[r][ri].second;
 				}
 				bestval = max(bestval, dec[r-1][j] + tot[r] - rwt);
 			}
 
 			selfmax(dec[r][i], bestval - (i >= 1 ? fishpref[r][i-1] : 0));
		}
	}
 
	ll res = 0;
	for(vll x : inc)
		for(ll y : x)
			res = max(res, y);
	for(vll x : dec)
		for(ll y : x)
			res = max(res, y);
 
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 104 ms 48320 KB Output is correct
2 Correct 115 ms 54272 KB Output is correct
3 Correct 68 ms 42480 KB Output is correct
4 Correct 68 ms 42444 KB Output is correct
5 Correct 207 ms 71368 KB Output is correct
6 Correct 305 ms 71900 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Execution timed out 1099 ms 41760 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 68 ms 42648 KB Output is correct
2 Correct 74 ms 42560 KB Output is correct
3 Correct 96 ms 40480 KB Output is correct
4 Correct 84 ms 43620 KB Output is correct
5 Correct 111 ms 45628 KB Output is correct
6 Correct 107 ms 45608 KB Output is correct
7 Correct 110 ms 45592 KB Output is correct
8 Correct 117 ms 45632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6124 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6124 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 30 ms 10172 KB Output is correct
18 Correct 32 ms 10684 KB Output is correct
19 Correct 22 ms 10524 KB Output is correct
20 Correct 21 ms 10580 KB Output is correct
21 Correct 21 ms 10484 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 16 ms 8736 KB Output is correct
25 Correct 3 ms 5972 KB Output is correct
26 Correct 10 ms 6612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5716 KB Output is correct
2 Correct 3 ms 5716 KB Output is correct
3 Correct 3 ms 5716 KB Output is correct
4 Correct 3 ms 5716 KB Output is correct
5 Correct 3 ms 5716 KB Output is correct
6 Correct 3 ms 5716 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Correct 3 ms 5716 KB Output is correct
9 Correct 3 ms 5844 KB Output is correct
10 Correct 4 ms 6124 KB Output is correct
11 Correct 3 ms 5844 KB Output is correct
12 Correct 4 ms 5972 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 4 ms 5972 KB Output is correct
15 Correct 4 ms 5844 KB Output is correct
16 Correct 4 ms 5972 KB Output is correct
17 Correct 30 ms 10172 KB Output is correct
18 Correct 32 ms 10684 KB Output is correct
19 Correct 22 ms 10524 KB Output is correct
20 Correct 21 ms 10580 KB Output is correct
21 Correct 21 ms 10484 KB Output is correct
22 Correct 45 ms 15292 KB Output is correct
23 Correct 7 ms 6740 KB Output is correct
24 Correct 16 ms 8736 KB Output is correct
25 Correct 3 ms 5972 KB Output is correct
26 Correct 10 ms 6612 KB Output is correct
27 Correct 6 ms 7124 KB Output is correct
28 Correct 153 ms 28280 KB Output is correct
29 Correct 309 ms 35092 KB Output is correct
30 Correct 150 ms 35028 KB Output is correct
31 Correct 152 ms 34888 KB Output is correct
32 Correct 161 ms 37324 KB Output is correct
33 Correct 149 ms 34892 KB Output is correct
34 Correct 167 ms 34896 KB Output is correct
35 Correct 67 ms 17896 KB Output is correct
36 Correct 153 ms 35920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 68 ms 42648 KB Output is correct
2 Correct 74 ms 42560 KB Output is correct
3 Correct 96 ms 40480 KB Output is correct
4 Correct 84 ms 43620 KB Output is correct
5 Correct 111 ms 45628 KB Output is correct
6 Correct 107 ms 45608 KB Output is correct
7 Correct 110 ms 45592 KB Output is correct
8 Correct 117 ms 45632 KB Output is correct
9 Correct 118 ms 51096 KB Output is correct
10 Correct 81 ms 29368 KB Output is correct
11 Correct 211 ms 53020 KB Output is correct
12 Correct 3 ms 5716 KB Output is correct
13 Correct 3 ms 5716 KB Output is correct
14 Correct 3 ms 5716 KB Output is correct
15 Correct 4 ms 5716 KB Output is correct
16 Correct 3 ms 5784 KB Output is correct
17 Correct 3 ms 5716 KB Output is correct
18 Correct 67 ms 42432 KB Output is correct
19 Correct 76 ms 42480 KB Output is correct
20 Correct 74 ms 42516 KB Output is correct
21 Correct 80 ms 42508 KB Output is correct
22 Correct 159 ms 51636 KB Output is correct
23 Correct 171 ms 59320 KB Output is correct
24 Correct 175 ms 60740 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 104 ms 48320 KB Output is correct
2 Correct 115 ms 54272 KB Output is correct
3 Correct 68 ms 42480 KB Output is correct
4 Correct 68 ms 42444 KB Output is correct
5 Correct 207 ms 71368 KB Output is correct
6 Correct 305 ms 71900 KB Output is correct
7 Correct 3 ms 5716 KB Output is correct
8 Execution timed out 1099 ms 41760 KB Time limit exceeded
9 Halted 0 ms 0 KB -