Submission #629358

# Submission time Handle Problem Language Result Execution time Memory
629358 2022-08-14T12:08:10 Z dacin21 Digital Circuit (IOI22_circuit) C++17
100 / 100
1077 ms 14140 KB
#include "circuit.h"

#include <bits/stdc++.h>
using namespace std;

template<typename traits>
class Mod_Int{
public:
    using int_t = typename traits::int_t;
    using long_t = typename traits::long_t;
    static constexpr int_t mod(){ return traits::get_mod(); };

    struct Summer{
    public:
        static constexpr long_t modmod(){ return traits::get_mod()*(long_t)traits::get_mod(); };
        static long_t modmod_step(long_t const& val){
            return val >= modmod() ? val-modmod() : val;
        }

        Summer() : val{} {}
        explicit Summer(Mod_Int const&o) : val(o.get_value()){}
        operator Mod_Int() const {
            return Mod_Int(mod_full(val));
        }

        Summer operator-(Summer const&o){
            return Summer(modmod() - modmod_step(o.val));
        }
        Summer& operator+=(Summer const&o){
            val = modmod_step(val+o.val);
            return *this;
        }
        Summer& operator-=(Summer const&o){
            return operator-=(-o);
        }
        Summer& addmul(Mod_Int const&a, Mod_Int const&b){
            val = modmod_step(val + a.get_value()*(long_t)b.get_value());
            return *this;
        }

    private:
        long_t val;
    };


    Mod_Int() : value(0) {}
    Mod_Int(int_t value_) : value(value_) {}

    friend ostream& operator<<(ostream&o, Mod_Int const&val){
        return o << val.value;
    }
    friend istream& operator>>(istream&i, Mod_Int &val){
         i >> val.value;
         val.value = mod_full(val.value);
         return i;
    }
    int_t const& get_value() const {
        return value;
    }

    Mod_Int operator+(Mod_Int const&o) const {
        Mod_Int ret(mod_step(value + o.value));
        return ret;
    }
    Mod_Int& operator+=(Mod_Int const&o){
        return *this = *this + o;
    }
    Mod_Int& operator++(){
        return operator+=(int_t{1});
    }
    Mod_Int operator-() const{
        Mod_Int ret(mod_step(mod() - value));
        return ret;
    }
    Mod_Int operator-(Mod_Int const&o) const {
        return operator+(-o);
    }
    Mod_Int& operator-=(Mod_Int const&o){
        return operator+=(-o);
    }
    Mod_Int& operator--(){
        return operator-=(int_t{1});
    }
    friend Mod_Int operator*(Mod_Int const&a, Mod_Int const&b) {
        Mod_Int ret(mod_full(a.value * static_cast<long_t>(b.value)));
        return ret;
    }
    Mod_Int& operator*=(Mod_Int const&o){
        return *this = *this * o;
    }
    Mod_Int inv() const {
        return inv_impl(value);
    }
    Mod_Int operator/(Mod_Int const&o) const {
        return *this * o.inv();
    }
    Mod_Int& operator/=(Mod_Int const&o) {
        return *this = *this / o;
    }

    bool operator==(Mod_Int const&o) const {
        return value == o.value;
    }
    bool operator!=(Mod_Int const&o) const {
        return !(*this == o);
    }
    bool operator!() const {
        return !value;
    }

private:
    static int_t mod_step(int_t const& val){
        return val >= mod() ? val-mod() : val;
    }
    static int_t mod_full(long_t const&val){
        return mod() ? val%mod() : val;
    }
    static Mod_Int inv_impl(Mod_Int const& val){
        if(mod() == 0){
            assert(val*val == 1);
            return val;
        }
        int_t value = val.value;
        constexpr size_t cache_size = traits::inv_cache_size()+1;
        static_assert(cache_size > 1);
        static array<Mod_Int, cache_size> cache = [](){
            array<Mod_Int, cache_size> ret;
            ret[1] = 1;
            for(int_t i=2;i<cache_size && i < mod();++i){
                ret[i] = -ret[mod()%i] * (mod()/i);
            }
            return ret;
        } ();
        assert(value != 0);
        Mod_Int factor = 1;
        while(value >= cache_size){
            factor *= - Mod_Int(mod() / value);
            value = mod() % value;
        }
        assert(value != 0);
        assert(factor != 0  && value != 0);
        return factor * cache[value];
    }

    int_t value;
};

template<uint32_t mod>
struct fixed_mod{
    using int_t = uint32_t;
    using long_t = uint64_t;
    static_assert(mod != 0, "Negative numbers won't work.");
    static_assert(numeric_limits<int_t>::max()/2 >= mod, "Addition might overflow.");
    static constexpr size_t inv_cache_size(){ return 30000; }
    static constexpr int_t get_mod(){ return mod; }
};
#ifdef __SIZEOF_INT128__
template<uint64_t mod>
struct fixed_mod_long{
    using int_t = uint64_t;
    using long_t = __int128;
    static_assert(mod != 0, "Negative numbers won't work.");
    static_assert(numeric_limits<int_t>::max()/2 >= mod, "Addition might overflow.");
    static constexpr size_t inv_cache_size(){ return 30000; }
    static constexpr int_t get_mod(){ return mod; }
};
#endif // __SIZEOF_INT128__
struct no_mod{
    using int_t  = int64_t;
    using long_t = int_t;
    static constexpr size_t inv_cache_size(){ return 1; }
    static constexpr int_t get_mod(){ return 0; }
};
struct mutable_mod{
    using int_t = uint32_t;
    using long_t = uint64_t;
    static int_t mod;
    // can't use cache if mod is changing
    static constexpr size_t inv_cache_size(){ return 1; }
    static int_t get_mod(){ return mod; }
};
mutable_mod::int_t mutable_mod::mod = 1000000007;

using num = Mod_Int<fixed_mod<1'000'002'022> >;

//really fast iterative segment-tree implementation
template<class Segtree_Data>
struct Segtree{
	int N, height;
	vector<typename Segtree_Data::node_t> data;
	vector<typename Segtree_Data::update_t> lazy;
	Segtree(vector<typename Segtree_Data::node_t> const&base):N(base.size()), height(__builtin_clz(1)-__builtin_clz(N)), data(2*N, Segtree_Data::node_ne()), lazy(2*N, Segtree_Data::update_ne()){
		copy(base.begin(), base.end(), data.begin()+N);
		for(int i=N-1;i>=0;--i)
			data[i]=Segtree_Data::merge_nodes(data[i<<1], data[i<<1|1]);
	}
	Segtree(int n):N(n), height(__builtin_clz(1)-__builtin_clz(N)), data(2*N, Segtree_Data::node_ne()), lazy(2*N, Segtree_Data::update_ne()){
		for(int i=N-1;i>=0;--i)
			data[i]=Segtree_Data::merge_nodes(data[i<<1], data[i<<1|1]);
	}
	void local_update(int pos, typename Segtree_Data::update_t const&val){
		Segtree_Data::update_node(data[pos], val);
		if(pos<N) lazy[pos] = Segtree_Data::merge_lazy(lazy[pos], val);
	}
	void push(int pos){
		for(int s=height;s>0;--s){
			int i=pos>>s;
			if(lazy[i]!=Segtree_Data::update_ne()){
				local_update(i<<1, lazy[i]);
				local_update(i<<1|1, lazy[i]);
				lazy[i]=Segtree_Data::update_ne();
			}
		}
	}
	void re_path(int pos){
		while(pos>>=1) Segtree_Data::update_node(data[pos] = Segtree_Data::merge_nodes(data[pos<<1], data[pos<<1|1]), lazy[pos]);
	}
	void update(int l, int r, typename Segtree_Data::update_t const&val){
		int l2=l+=N, r2=r+=N;
		push(l2); push(r2-1);
		for(;l<r;l>>=1, r>>=1){
			if(l&1) local_update(l++, val);
			if(r&1) local_update(--r, val);
		}
		re_path(l2);re_path(r2-1);
	}
	typename Segtree_Data::node_t query(int l, int r){
		push(l+N); push(r+N-1);
		typename Segtree_Data::node_t retL=Segtree_Data::node_ne(), retR=Segtree_Data::node_ne();
		for(l+=N, r+=N;l<r;l>>=1, r>>=1){
			if(l&1)retL=Segtree_Data::merge_nodes(retL, data[l++]);
			if(r&1)retR=Segtree_Data::merge_nodes(data[--r], retR);
		}
		return Segtree_Data::merge_nodes(retL, retR);
	}
};
struct Node{
    num on, off;
};
struct Segtreedata{
    typedef Node node_t;
    typedef int update_t;
    static node_t node_ne() {return Node{0, 0};}
    static update_t update_ne(){return 0;}
    static node_t merge_nodes(node_t const&left, node_t const&right){
        return Node{left.on+right.on, left.off+right.off};
    }
    static void update_node(node_t &node, update_t const&update){
        if(update % 2){
            swap(node.on, node.off);
        }
    }
    static update_t merge_lazy(update_t const&old, update_t const&update){
        return old + update;
    }
};

Segtree<Segtreedata> st(0);
int NN, MM;

void init(int N, int M, vector<int> p, vector<int> a) {
    MM = M; NN=N;
    // [0, N) is computed, [N, N+M) is given
    vector<vector<int> > ch(N);
    for(int i=1; i<N+M; ++i) ch[p[i]].push_back(i);
    vector<num> states(N+M, num(1));
    vector<num> down(N+M, num(1));
    vector<num> pre, suff;
    for(int i=N-1; i>=0; --i){
        auto &e = ch[i];
        const int d = ch[i].size();
        pre.assign(d+1, num(1));
        suff.assign(d+1, num(1));
        for(int j=0; j<d; ++j){
            pre[j+1] = pre[j] * states[e[j]];
        }
        for(int j = d-1; j>=0; --j){
            suff[j] = suff[j+1] * states[e[j]];
        }
        for(int j=0; j<d; ++j){
            down[e[j]] = pre[j] * suff[j+1];
        }
        states[i] = pre.back() * num(d);
    }
    for(int i=1; i<N+M; ++i){
        down[i] *= down[p[i]];
    }
    /*for(int i=N; i<N+M; ++i){
        cerr << down[i] << " ";
    }
    cerr << "\n";*/

    vector<Node> base(M);
    for(int i=0; i<M; ++i){
        base[i] = a[i] ? Node{down[N+i], 0} : Node{0, down[N+i]};
        // base[i] = Node{down[N+i], 0};
    }
    st = decltype(st)(base);
}

int count_ways(int L, int R) {
  L -= NN;
  R -= NN;
  ++R;
  st.update(L, R, 1);
  const num ans = st.query(0, MM).on;
  return ans.get_value();
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 208 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 0 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 300 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 336 KB Output is correct
10 Correct 1 ms 336 KB Output is correct
11 Correct 1 ms 336 KB Output is correct
12 Correct 1 ms 336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 208 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 0 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 208 KB Output is correct
11 Correct 1 ms 336 KB Output is correct
12 Correct 1 ms 336 KB Output is correct
13 Correct 1 ms 336 KB Output is correct
14 Correct 1 ms 336 KB Output is correct
15 Correct 1 ms 300 KB Output is correct
16 Correct 1 ms 336 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 336 KB Output is correct
21 Correct 1 ms 336 KB Output is correct
22 Correct 1 ms 336 KB Output is correct
23 Correct 1 ms 336 KB Output is correct
24 Correct 1 ms 336 KB Output is correct
25 Correct 1 ms 416 KB Output is correct
26 Correct 1 ms 336 KB Output is correct
27 Correct 1 ms 336 KB Output is correct
28 Correct 1 ms 336 KB Output is correct
29 Correct 1 ms 368 KB Output is correct
30 Correct 1 ms 336 KB Output is correct
31 Correct 1 ms 336 KB Output is correct
32 Correct 1 ms 336 KB Output is correct
33 Correct 1 ms 336 KB Output is correct
34 Correct 1 ms 336 KB Output is correct
35 Correct 1 ms 336 KB Output is correct
36 Correct 1 ms 336 KB Output is correct
37 Correct 1 ms 336 KB Output is correct
38 Correct 1 ms 336 KB Output is correct
39 Correct 1 ms 336 KB Output is correct
40 Correct 1 ms 336 KB Output is correct
41 Correct 1 ms 336 KB Output is correct
42 Correct 1 ms 336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 656 ms 4408 KB Output is correct
2 Correct 814 ms 8520 KB Output is correct
3 Correct 850 ms 8520 KB Output is correct
4 Correct 933 ms 8436 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 656 ms 4408 KB Output is correct
2 Correct 814 ms 8520 KB Output is correct
3 Correct 850 ms 8520 KB Output is correct
4 Correct 933 ms 8436 KB Output is correct
5 Correct 719 ms 4432 KB Output is correct
6 Correct 760 ms 8520 KB Output is correct
7 Correct 885 ms 8476 KB Output is correct
8 Correct 827 ms 8424 KB Output is correct
9 Correct 381 ms 584 KB Output is correct
10 Correct 729 ms 796 KB Output is correct
11 Correct 779 ms 792 KB Output is correct
12 Correct 588 ms 784 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 300 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 336 KB Output is correct
10 Correct 1 ms 336 KB Output is correct
11 Correct 1 ms 336 KB Output is correct
12 Correct 1 ms 336 KB Output is correct
13 Correct 656 ms 4408 KB Output is correct
14 Correct 814 ms 8520 KB Output is correct
15 Correct 850 ms 8520 KB Output is correct
16 Correct 933 ms 8436 KB Output is correct
17 Correct 719 ms 4432 KB Output is correct
18 Correct 760 ms 8520 KB Output is correct
19 Correct 885 ms 8476 KB Output is correct
20 Correct 827 ms 8424 KB Output is correct
21 Correct 381 ms 584 KB Output is correct
22 Correct 729 ms 796 KB Output is correct
23 Correct 779 ms 792 KB Output is correct
24 Correct 588 ms 784 KB Output is correct
25 Correct 867 ms 12588 KB Output is correct
26 Correct 909 ms 12828 KB Output is correct
27 Correct 976 ms 12832 KB Output is correct
28 Correct 818 ms 12832 KB Output is correct
29 Correct 848 ms 12748 KB Output is correct
30 Correct 779 ms 12732 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 208 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 0 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 208 KB Output is correct
11 Correct 1 ms 336 KB Output is correct
12 Correct 1 ms 336 KB Output is correct
13 Correct 1 ms 336 KB Output is correct
14 Correct 1 ms 336 KB Output is correct
15 Correct 1 ms 300 KB Output is correct
16 Correct 1 ms 336 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 336 KB Output is correct
21 Correct 1 ms 336 KB Output is correct
22 Correct 1 ms 336 KB Output is correct
23 Correct 1 ms 336 KB Output is correct
24 Correct 1 ms 336 KB Output is correct
25 Correct 1 ms 416 KB Output is correct
26 Correct 1 ms 336 KB Output is correct
27 Correct 1 ms 336 KB Output is correct
28 Correct 1 ms 336 KB Output is correct
29 Correct 1 ms 368 KB Output is correct
30 Correct 1 ms 336 KB Output is correct
31 Correct 1 ms 336 KB Output is correct
32 Correct 1 ms 336 KB Output is correct
33 Correct 1 ms 336 KB Output is correct
34 Correct 1 ms 336 KB Output is correct
35 Correct 1 ms 336 KB Output is correct
36 Correct 1 ms 336 KB Output is correct
37 Correct 1 ms 336 KB Output is correct
38 Correct 1 ms 336 KB Output is correct
39 Correct 1 ms 336 KB Output is correct
40 Correct 1 ms 336 KB Output is correct
41 Correct 1 ms 336 KB Output is correct
42 Correct 1 ms 336 KB Output is correct
43 Correct 520 ms 712 KB Output is correct
44 Correct 787 ms 592 KB Output is correct
45 Correct 883 ms 672 KB Output is correct
46 Correct 862 ms 912 KB Output is correct
47 Correct 1077 ms 916 KB Output is correct
48 Correct 969 ms 908 KB Output is correct
49 Correct 619 ms 908 KB Output is correct
50 Correct 1020 ms 908 KB Output is correct
51 Correct 896 ms 620 KB Output is correct
52 Correct 857 ms 624 KB Output is correct
53 Correct 813 ms 592 KB Output is correct
54 Correct 788 ms 900 KB Output is correct
55 Correct 776 ms 724 KB Output is correct
56 Correct 849 ms 676 KB Output is correct
57 Correct 822 ms 592 KB Output is correct
58 Correct 797 ms 900 KB Output is correct
59 Correct 673 ms 988 KB Output is correct
60 Correct 926 ms 984 KB Output is correct
61 Correct 711 ms 592 KB Output is correct
62 Correct 778 ms 616 KB Output is correct
63 Correct 677 ms 592 KB Output is correct
64 Correct 954 ms 712 KB Output is correct
65 Correct 408 ms 528 KB Output is correct
66 Correct 863 ms 784 KB Output is correct
67 Correct 704 ms 720 KB Output is correct
68 Correct 804 ms 788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 208 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 1 ms 336 KB Output is correct
5 Correct 0 ms 336 KB Output is correct
6 Correct 1 ms 336 KB Output is correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 336 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 208 KB Output is correct
11 Correct 1 ms 336 KB Output is correct
12 Correct 1 ms 336 KB Output is correct
13 Correct 1 ms 336 KB Output is correct
14 Correct 1 ms 336 KB Output is correct
15 Correct 1 ms 300 KB Output is correct
16 Correct 1 ms 336 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 336 KB Output is correct
21 Correct 1 ms 336 KB Output is correct
22 Correct 1 ms 336 KB Output is correct
23 Correct 1 ms 336 KB Output is correct
24 Correct 1 ms 336 KB Output is correct
25 Correct 1 ms 416 KB Output is correct
26 Correct 1 ms 336 KB Output is correct
27 Correct 1 ms 336 KB Output is correct
28 Correct 1 ms 336 KB Output is correct
29 Correct 1 ms 368 KB Output is correct
30 Correct 1 ms 336 KB Output is correct
31 Correct 1 ms 336 KB Output is correct
32 Correct 1 ms 336 KB Output is correct
33 Correct 1 ms 336 KB Output is correct
34 Correct 1 ms 336 KB Output is correct
35 Correct 1 ms 336 KB Output is correct
36 Correct 1 ms 336 KB Output is correct
37 Correct 1 ms 336 KB Output is correct
38 Correct 1 ms 336 KB Output is correct
39 Correct 1 ms 336 KB Output is correct
40 Correct 1 ms 336 KB Output is correct
41 Correct 1 ms 336 KB Output is correct
42 Correct 1 ms 336 KB Output is correct
43 Correct 656 ms 4408 KB Output is correct
44 Correct 814 ms 8520 KB Output is correct
45 Correct 850 ms 8520 KB Output is correct
46 Correct 933 ms 8436 KB Output is correct
47 Correct 719 ms 4432 KB Output is correct
48 Correct 760 ms 8520 KB Output is correct
49 Correct 885 ms 8476 KB Output is correct
50 Correct 827 ms 8424 KB Output is correct
51 Correct 381 ms 584 KB Output is correct
52 Correct 729 ms 796 KB Output is correct
53 Correct 779 ms 792 KB Output is correct
54 Correct 588 ms 784 KB Output is correct
55 Correct 867 ms 12588 KB Output is correct
56 Correct 909 ms 12828 KB Output is correct
57 Correct 976 ms 12832 KB Output is correct
58 Correct 818 ms 12832 KB Output is correct
59 Correct 848 ms 12748 KB Output is correct
60 Correct 779 ms 12732 KB Output is correct
61 Correct 520 ms 712 KB Output is correct
62 Correct 787 ms 592 KB Output is correct
63 Correct 883 ms 672 KB Output is correct
64 Correct 862 ms 912 KB Output is correct
65 Correct 1077 ms 916 KB Output is correct
66 Correct 969 ms 908 KB Output is correct
67 Correct 619 ms 908 KB Output is correct
68 Correct 1020 ms 908 KB Output is correct
69 Correct 896 ms 620 KB Output is correct
70 Correct 857 ms 624 KB Output is correct
71 Correct 813 ms 592 KB Output is correct
72 Correct 788 ms 900 KB Output is correct
73 Correct 776 ms 724 KB Output is correct
74 Correct 849 ms 676 KB Output is correct
75 Correct 822 ms 592 KB Output is correct
76 Correct 797 ms 900 KB Output is correct
77 Correct 673 ms 988 KB Output is correct
78 Correct 926 ms 984 KB Output is correct
79 Correct 711 ms 592 KB Output is correct
80 Correct 778 ms 616 KB Output is correct
81 Correct 677 ms 592 KB Output is correct
82 Correct 954 ms 712 KB Output is correct
83 Correct 408 ms 528 KB Output is correct
84 Correct 863 ms 784 KB Output is correct
85 Correct 704 ms 720 KB Output is correct
86 Correct 804 ms 788 KB Output is correct
87 Correct 0 ms 208 KB Output is correct
88 Correct 557 ms 11412 KB Output is correct
89 Correct 916 ms 8420 KB Output is correct
90 Correct 867 ms 8136 KB Output is correct
91 Correct 864 ms 12872 KB Output is correct
92 Correct 935 ms 12868 KB Output is correct
93 Correct 860 ms 12868 KB Output is correct
94 Correct 935 ms 12860 KB Output is correct
95 Correct 807 ms 12872 KB Output is correct
96 Correct 953 ms 7080 KB Output is correct
97 Correct 954 ms 6976 KB Output is correct
98 Correct 758 ms 7240 KB Output is correct
99 Correct 768 ms 12724 KB Output is correct
100 Correct 971 ms 9244 KB Output is correct
101 Correct 920 ms 8008 KB Output is correct
102 Correct 835 ms 6192 KB Output is correct
103 Correct 963 ms 12724 KB Output is correct
104 Correct 1025 ms 14140 KB Output is correct
105 Correct 902 ms 14104 KB Output is correct
106 Correct 886 ms 8008 KB Output is correct
107 Correct 1002 ms 6816 KB Output is correct
108 Correct 977 ms 6740 KB Output is correct
109 Correct 479 ms 6344 KB Output is correct