Submission #610896

# Submission time Handle Problem Language Result Execution time Memory
610896 2022-07-28T17:21:24 Z Tigerpants Distributing Candies (IOI21_candies) C++17
100 / 100
1905 ms 81548 KB
//#include <iostream>
#include "candies.h"
#include <bits/stdc++.h>
#include <vector>
#include <string>
#include <set>
#include <map>
#include <numeric>
#include <algorithm>

using namespace std;

typedef long long int ll;
typedef vector<ll> vi;
typedef vector<vi> vvi;
typedef pair<ll, ll> pi;
typedef tuple<ll, ll, ll> t3i;
typedef tuple<ll, ll, ll, ll> t4i;
typedef tuple<ll, ll, ll, ll, ll> t5i;
typedef vector<pi> vpi;
typedef vector<t3i> vt3i;
typedef vector<t4i> vt4i;
typedef vector<t5i> vt5i;

ll inf = 1000000000000000;
vi none = {-inf, 0, inf, 0, 0};

vvi segtree_M; // max val, max index, min val, min index, update
vpi segtree_M_span; // left, right

// bug: segment tree should be sorted by time, and affect a time-period

void print_tree(ll x) {
    //cout << x << ": " << segtree_M[x][0] << " " << segtree_M[x][1] << " " << segtree_M[x][2] << " " << segtree_M[x][3] << " " << segtree_M[x][4] << endl;
    if (segtree_M_span[x].first != segtree_M_span[x].second) {
        print_tree(2 * x);
        print_tree(2 * x + 1);
    }
}

vi combine(vi a, vi b) { // if they are equal, second parameter gets dips on index
    vi result(5);
    if (a[0] > b[0]) {
        result[0] = a[0]; result[1] = a[1];
    } else {
        result[0] = b[0]; result[1] = b[1];
    }
    if (a[2] < b[2]) {
        result[2] = a[2]; result[3] = a[3];
    } else {
        result[2] = b[2]; result[3] = b[3];
    }
    return result;
}

void build(ll x, ll l, ll r) {
    segtree_M_span[x] = make_pair(l, r);
    segtree_M[x] = {0, l, 0, l, 0};

    if (l == r) {
        return;
    }

    ll mid = (l + r) / 2;

    build(2 * x, l, mid);
    build(2 * x + 1, mid + 1, r);
}

void lazy_propagation(ll x) {
    // lazy propagation for guaranteed O(log n) for updates
    // check if node has children, if so propagate down...
    if (segtree_M_span[x].first != segtree_M_span[x].second) {
        // left child
        segtree_M[2 * x][0] += segtree_M[x][4];
        segtree_M[2 * x][2] += segtree_M[x][4];
        segtree_M[2 * x][4] += segtree_M[x][4];
        // right child
        segtree_M[2 * x + 1][0] += segtree_M[x][4];
        segtree_M[2 * x + 1][2] += segtree_M[x][4];
        segtree_M[2 * x + 1][4] += segtree_M[x][4];
    }
    segtree_M[x][4] = 0;
}

void update(ll x, ll l, ll r, ll v) { // range update add v to elements of [l, r]
    lazy_propagation(x);

    if ((segtree_M_span[x].first > r) || (segtree_M_span[x].second < l)) {
        return;
    }
    if ((segtree_M_span[x].first >= l) && (segtree_M_span[x].second <= r)) {
        //cout << segtree_M_span[x].first << " " << segtree_M_span[x].second << " : " << v << endl;
        segtree_M[x][0] += v;
        segtree_M[x][2] += v;
        segtree_M[x][4] += v;
        return;
    }
    update(2 * x, l, r, v);
    update(2 * x + 1, l, r, v);
    segtree_M[x] = combine(segtree_M[2 * x], segtree_M[2 * x + 1]);
}

/*
vi query(ll x, ll l, ll r) {
    lazy_propagation(x);

    if ((segtree_M_span[x].first > r) || (segtree_M_span[x].second < l)) {
        return none;
    }
    if ((segtree_M_span[x].first >= l) && (segtree_M_span[x].second <= r)) {
        return segtree_M[x];
    }

    return combine(query(2 * x, l, r), query(2 * x + 1, l, r));
}
*/

vi binary_search_res(5);

void binary_search(ll x, ll c) {
    if (segtree_M_span[x].first == segtree_M_span[x].second) {
        if (binary_search_res[0] - binary_search_res[2] < c) {
            binary_search_res = combine(segtree_M[x], binary_search_res);
        }
        return;
    }

    lazy_propagation(x);

    vi right_res = combine(segtree_M[2 * x + 1], binary_search_res);
    if (right_res[0] - right_res[2] < c) {
        binary_search_res = right_res;
        binary_search(2 * x, c);
    } else {
        binary_search(2 * x + 1, c);
    }

    return;
}

std::vector<int> distribute_candies(std::vector<int> c, std::vector<int> l, std::vector<int> r, std::vector<int> v) {
    ll n = c.size();
    ll q = l.size(); // size of r and v too

    std::vector<int> result(n);

    vvi queries1(q, vi(4)); // use get<2>(queries[i]) and queries[i] = make_tuple(..., ..., ...)
    vvi queries2(q, vi(4));
    for (ll i = 0; i < q; i++) {
        queries1[i] = {(ll)l[i], (ll)r[i], (ll)v[i], i + 2};
        queries2[i] = {(ll)r[i], (ll)l[i], (ll)v[i], i + 2};
    }

    sort(queries1.begin(), queries1.end());
    sort(queries2.begin(), queries2.end());

    //cout << "sorted" << endl;

    segtree_M.resize(524288); //segtree_M.resize(4 * q + 8);
    segtree_M_span.resize(524288); //segtree_M_span.resize(4 * q + 8);
    build(1, 0, q + 1);
    update(1, 0, 0, inf);

    //print_tree(1);
    //cout << "built" << endl;

    vvi::iterator itr1 = queries1.begin(); // activation ptr
    vvi::iterator itr2 = queries2.begin(); // deactivation ptr

    ll end_sum = 0;

    for (int i = 0; i < n; i++) {
        //cout << i << "/" << n << endl;
        // activate queries
        if (itr1 != queries1.end()) {
            while (itr1->at(0) <= i) {
                update(1, itr1->at(3), q + 1, itr1->at(2));
                end_sum += itr1->at(2);
                //cout << get<0>(*itr1) << " " << get<1>(*itr1) << " " << get<2>(*itr1) << " " << get<3>(*itr1) << endl;
                //print_tree(1);
                itr1++;
                if (itr1 == queries1.end()) {
                    break;
                }
            }
        }
        //cout << "activated" << endl;
        // deactivate queries
        if (itr2 != queries2.end()) {
            while (itr2->at(0) < i) {
                update(1, itr2->at(3), q + 1, -itr2->at(2));
                end_sum -= itr2->at(2);
                //cout << get<1>(*itr2) << " " << get<0>(*itr2) << " " << get<2>(*itr2) << " " << get<3>(*itr2) << endl;
                itr2++;
                if (itr2 == queries2.end()) {
                    break;
                }
            }
        }
        //cout << "deactivated" << endl;
        //print_tree(1);
        //cout << "printed tree" << endl;
        // binary search for max - min ≈ c[i]
        //ll minj = 0;
        //ll maxj = q + 2;
        // store end result outside scope for finishing calculations

        /*
        vi q_res;
        while (minj + 1 < maxj) {
            ll midj = (minj + maxj) / 2;
            q_res = query(1, midj, q + 1);
            //cout << minj << " " << maxj << " " << midj << endl;
            //cout << q_res[0] << " " << q_res[1] << " " << q_res[2] << " " << q_res[3] << " " << q_res[4] << endl;
            if (q_res[0] - q_res[2] < (ll)c[i]) {
                maxj = midj;
            } else {
                minj = midj;
            }
        }
        q_res = query(1, minj, q + 1);
        */

        binary_search_res = none;
        binary_search(1, c[i]);
        
        //cout << minj << endl;
        //cout << q_res[0] << " " << q_res[1] << " " << q_res[2] << " " << q_res[3] << " " << q_res[4] << endl;
        //cout << "found result" << endl;
        // calculate result
        if (binary_search_res[1] > binary_search_res[3]) {
            // use q_res[1] as reference
            result[i] = c[i] + (int)(end_sum - binary_search_res[0]);
        } else {
            // use q_res[3] as reference
            result[i] = (int)(end_sum - binary_search_res[2]);
        }
        //cout << "calculated result: " << result[i] << endl;
    }

    return result;
}

/*
int main() {
    std::vector<int> c = {10, 15, 13};
    std::vector<int> l = {0, 0, 1, 0};
    std::vector<int> r = {2, 1, 2, 2};
    std::vector<int> v = {20, -11, -3, 4};
    std::vector<int> result = distribute_candies(c, l, r, v);
    for (ll i = 0; i < result.size(); i++) {
        cout << result[i] << " ";
    }
    cout << endl;
    return 0;
}
*/
# Verdict Execution time Memory Grader output
1 Correct 10 ms 20820 KB Output is correct
2 Correct 11 ms 20820 KB Output is correct
3 Correct 17 ms 21332 KB Output is correct
4 Correct 16 ms 21344 KB Output is correct
5 Correct 19 ms 21408 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1829 ms 79700 KB Output is correct
2 Correct 1840 ms 78920 KB Output is correct
3 Correct 1905 ms 78764 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 20820 KB Output is correct
2 Correct 1407 ms 75528 KB Output is correct
3 Correct 259 ms 26940 KB Output is correct
4 Correct 1803 ms 80764 KB Output is correct
5 Correct 1816 ms 81200 KB Output is correct
6 Correct 1762 ms 81548 KB Output is correct
7 Correct 1744 ms 80856 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 20820 KB Output is correct
2 Correct 11 ms 20820 KB Output is correct
3 Correct 816 ms 75152 KB Output is correct
4 Correct 256 ms 25004 KB Output is correct
5 Correct 1214 ms 78432 KB Output is correct
6 Correct 1171 ms 79028 KB Output is correct
7 Correct 1209 ms 79692 KB Output is correct
8 Correct 1152 ms 78292 KB Output is correct
9 Correct 818 ms 79740 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 20820 KB Output is correct
2 Correct 11 ms 20820 KB Output is correct
3 Correct 17 ms 21332 KB Output is correct
4 Correct 16 ms 21344 KB Output is correct
5 Correct 19 ms 21408 KB Output is correct
6 Correct 1829 ms 79700 KB Output is correct
7 Correct 1840 ms 78920 KB Output is correct
8 Correct 1905 ms 78764 KB Output is correct
9 Correct 11 ms 20820 KB Output is correct
10 Correct 1407 ms 75528 KB Output is correct
11 Correct 259 ms 26940 KB Output is correct
12 Correct 1803 ms 80764 KB Output is correct
13 Correct 1816 ms 81200 KB Output is correct
14 Correct 1762 ms 81548 KB Output is correct
15 Correct 1744 ms 80856 KB Output is correct
16 Correct 10 ms 20820 KB Output is correct
17 Correct 11 ms 20820 KB Output is correct
18 Correct 816 ms 75152 KB Output is correct
19 Correct 256 ms 25004 KB Output is correct
20 Correct 1214 ms 78432 KB Output is correct
21 Correct 1171 ms 79028 KB Output is correct
22 Correct 1209 ms 79692 KB Output is correct
23 Correct 1152 ms 78292 KB Output is correct
24 Correct 818 ms 79740 KB Output is correct
25 Correct 9 ms 20820 KB Output is correct
26 Correct 261 ms 24880 KB Output is correct
27 Correct 1401 ms 75236 KB Output is correct
28 Correct 1805 ms 79400 KB Output is correct
29 Correct 1820 ms 79796 KB Output is correct
30 Correct 1804 ms 80044 KB Output is correct
31 Correct 1781 ms 80304 KB Output is correct
32 Correct 1791 ms 80376 KB Output is correct