답안 #603771

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
603771 2022-07-24T11:21:54 Z erekle 자동 인형 (IOI18_doll) C++17
53 / 100
113 ms 13512 KB
#include "doll.h"
#include <set>
#include <tuple>
#include <cassert>
#include <iostream>

using namespace std;

const int INF = 1e9;

bool drain(int i, int root, vector<int> &X, vector<int> &Y) {
  bool isDrain = false;
  if (X[-i] < 0) {if (drain(X[-i], root, X, Y)) isDrain = true;}
  else if (X[-i] == 0 || X[-i] == INF) X[-i] = root, isDrain = true;
  if (Y[-i] < 0) {if (drain(Y[-i], root, X, Y)) isDrain = true;}
  else if (Y[-i] == 0 || Y[-i] == INF) Y[-i] = root, isDrain = true;
  return isDrain;
}

void create_circuit(int M, vector<int> A) {
  int N = A.size();
  vector<vector<int>> nxt(1+M);
  nxt[0].push_back(A[0]);
  for (int i = 0; i < N-1; ++i) {
    nxt[A[i]].push_back(A[i+1]);
  }
  nxt[A[N-1]].push_back(0);

  int S = 0;
  vector<int> X(1), Y(1);
  vector<int> C(1+M); // root switch for each trigger

  for (int i = 0; i <= M; ++i) {
    if (nxt[i].empty()) { // unused trigger
      C[i] = i;
      continue;
    }
    int p2 = 1, expo = 0;
    while (p2 < (int)nxt[i].size()) ++expo, p2 <<= 1;

    // Order targets (stored in nxt) for tree of switches
    vector<int> orderedNxt(1, 0);
    for (int j = 1, previousPow2 = 1; j <= expo; ++j, previousPow2 <<= 1) {
      vector<int> nextLevel(2*orderedNxt.size());
      for (int k = 0; k < (int)nextLevel.size(); ++k) {
        nextLevel[k] = orderedNxt[k>>1] + (k&1)*previousPow2;
      }
      orderedNxt = nextLevel;
    }
    for (int j = 0; j < p2; ++j) {
      if (orderedNxt[j] >= (int)nxt[i].size()) orderedNxt[j] = INF;
      else orderedNxt[j] = nxt[i][orderedNxt[j]];
    }

    // Now build switches for pairs of targets
    vector<int> curSwitches = orderedNxt;
    while (curSwitches.size() > 1) {
      vector<int> nextSwitches((int)curSwitches.size()>>1);
      for (int j = 0; j < (int)nextSwitches.size(); ++j) {
        int x = curSwitches[2*j], y = curSwitches[2*j+1];
        if (x==INF && y==INF) {// this should never happen
          nextSwitches[j] = INF;
          continue;
        }
        // create switch
        
        // Create new switch
        ++S;
        X.push_back(x);
        Y.push_back(y);
        nextSwitches[j] = -S;
      }
      curSwitches = nextSwitches;
    }

    // now curSwitches[0] is the root switch for this trigger
    C[i] = curSwitches[0];
  }

  // Now we need to "drain" the switches at the end so they all have state X at the end
  //  find the roots of the trees that need draining
  vector<int> needDrain;
  for (int i = 0; i <= M; ++i) {
    if (C[i] >= 0) {
      if (C[i] == 0 || C[i] == INF) C[i] = i;
    } else if (drain(C[i], C[i], X, Y) && i != A[N-1]) {
      needDrain.push_back(i);
    }
  }

  auto getBottom = [&C, &Y](int i) {
    int root = C[i]; i = C[i];
    while (true) {
      if (i > 0) {
        if (C[i] == root) return i;
        i = C[i];
      } else {
        if (Y[-i] == root) return i;
        i = Y[-i];
      }
    }
  };

  //  link up the drain chain drain chain
  int prevBottom = getBottom(A[N-1]);
  for (int i : needDrain) {
    // connect bottom (end) of previous to root of current
    if (prevBottom > 0) C[prevBottom] = C[i];
    else Y[-prevBottom] = C[i];
    // find bottom of current
    prevBottom = getBottom(i);
  }

  //   connect last bottom back to the origin
  if (prevBottom > 0) C[prevBottom] = 0;
  else Y[-prevBottom] = 0;

  X.erase(X.begin());
  Y.erase(Y.begin());
  answer(C, X, Y);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 26 ms 6292 KB Output is correct
3 Correct 25 ms 5204 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 10 ms 3796 KB Output is correct
6 Correct 44 ms 7744 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 26 ms 6292 KB Output is correct
3 Correct 25 ms 5204 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 10 ms 3796 KB Output is correct
6 Correct 44 ms 7744 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 48 ms 7228 KB Output is correct
9 Correct 56 ms 8620 KB Output is correct
10 Correct 82 ms 10996 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 26 ms 6292 KB Output is correct
3 Correct 25 ms 5204 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 10 ms 3796 KB Output is correct
6 Correct 44 ms 7744 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 48 ms 7228 KB Output is correct
9 Correct 56 ms 8620 KB Output is correct
10 Correct 82 ms 10996 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 95 ms 11436 KB Output is correct
15 Correct 48 ms 5756 KB Output is correct
16 Correct 75 ms 8612 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 88 ms 12408 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 0 ms 212 KB Output isn't correct
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Partially correct 0 ms 212 KB Output is partially correct
2 Correct 37 ms 5104 KB Output is correct
3 Partially correct 61 ms 11056 KB Output is partially correct
4 Partially correct 91 ms 10960 KB Output is partially correct
# 결과 실행 시간 메모리 Grader output
1 Partially correct 0 ms 212 KB Output is partially correct
2 Correct 37 ms 5104 KB Output is correct
3 Partially correct 61 ms 11056 KB Output is partially correct
4 Partially correct 91 ms 10960 KB Output is partially correct
5 Partially correct 98 ms 12316 KB Output is partially correct
6 Partially correct 113 ms 12704 KB Output is partially correct
7 Partially correct 105 ms 12456 KB Output is partially correct
8 Partially correct 105 ms 12848 KB Output is partially correct
9 Partially correct 69 ms 8088 KB Output is partially correct
10 Partially correct 99 ms 13512 KB Output is partially correct
11 Partially correct 104 ms 13096 KB Output is partially correct
12 Partially correct 59 ms 8816 KB Output is partially correct
13 Partially correct 82 ms 8408 KB Output is partially correct
14 Partially correct 64 ms 8324 KB Output is partially correct
15 Partially correct 69 ms 8224 KB Output is partially correct
16 Partially correct 2 ms 468 KB Output is partially correct
17 Partially correct 56 ms 7196 KB Output is partially correct
18 Partially correct 50 ms 7132 KB Output is partially correct
19 Partially correct 54 ms 8512 KB Output is partially correct
20 Partially correct 75 ms 11168 KB Output is partially correct
21 Partially correct 85 ms 13076 KB Output is partially correct
22 Partially correct 75 ms 10684 KB Output is partially correct