This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
//this submission is just for fun, if you are looking for solution, have a look at previous one
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 200, M = 50000;
const ll infL = 3e18;
bool in_s_to_all[M], in_n_to_all[M], in_all_to_s[M], in_all_to_n[M], used[N];
ll dist_s_to_all[N], dist_n_to_all[N], dist_all_to_s[N], dist_all_to_n[N], D_s_all[N], D_all_s[N], D_n_all[N], D_all_n[N];
int A[M], B[M], W[M], D[M], P[M], revP[M], n, m;
void dijkstra(int s, vector<pair<int, int>> g[], ll dist[], bool need, bool in[], int blocked = -1) {
fill(dist, dist + n, infL);
dist[s] = 0;
vector<bool> was(n);
vector<int> par(n, -1);
while (s != -1) {
was[s] = true;
for (auto [to, i]: g[s]) {
if (i != blocked && dist[to] > dist[s] + W[i]) {
dist[to] = dist[s] + W[i];
par[to] = i;
}
}
int nxt = -1;
for (int i = 0; i < n; ++i) {
if (!was[i] && dist[i] != infL && (nxt == -1 || dist[nxt] > dist[i])) {
nxt = i;
}
}
s = nxt;
}
if (need) {
for (int i = 0; i < n; ++i) {
if (par[i] != -1) {
in[par[i]] = true;
}
}
}
}
vector<pair<int, int>> g[N], revg[N];
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m;
for (int i = 0; i < m; ++i) {
cin >> A[i] >> B[i] >> W[i] >> D[i];
--A[i], --B[i];
P[i] = (int) g[A[i]].size();
revP[i] = (int) revg[B[i]].size();
g[A[i]].emplace_back(B[i], i);
revg[B[i]].emplace_back(A[i], i);
}
dijkstra(0, g, dist_s_to_all, true, in_s_to_all);
dijkstra(0, revg, dist_all_to_s, true, in_all_to_s);
dijkstra(n - 1, g, dist_n_to_all, true, in_n_to_all);
dijkstra(n - 1, revg, dist_all_to_n, true, in_all_to_n);
ll ans = infL;
ans = min(ans, dist_s_to_all[n - 1] + dist_n_to_all[0]);
for (int i = 0; i < m; ++i) {
{
swap(g[A[i]][P[i]], g[A[i]].back());
g[A[i]].pop_back();
g[B[i]].emplace_back(A[i], i);
}
{
swap(revg[B[i]][revP[i]], revg[B[i]].back());
revg[B[i]].pop_back();
revg[A[i]].emplace_back(B[i], i);
}
ll val_s_all_n, val_s_all_b, val_all_n_a, val_n_all_0, val_n_all_b, val_all_s_a;
if (in_s_to_all[i]) {
dijkstra(0, g, D_s_all, false, in_s_to_all);
val_s_all_n = D_s_all[n - 1];
val_s_all_b = D_s_all[B[i]];
} else {
val_s_all_n = dist_s_to_all[n - 1];
val_s_all_b = dist_s_to_all[B[i]];
}
if (in_all_to_s[i]) {
dijkstra(0, revg, D_all_s, false, in_all_to_s);
val_all_s_a = D_all_s[A[i]];
} else {
val_all_s_a = dist_all_to_s[A[i]];
}
if (in_n_to_all[i]) {
dijkstra(n - 1, g, D_n_all, false, in_n_to_all);
val_n_all_0 = D_n_all[0];
val_n_all_b = D_n_all[B[i]];
} else {
val_n_all_0 = dist_n_to_all[0];
val_n_all_b = dist_n_to_all[B[i]];
}
if (in_all_to_n[i]) {
dijkstra(n - 1, revg, D_all_n, false, in_all_to_n);
val_all_n_a = D_all_n[A[i]];
} else {
val_all_n_a = dist_all_to_n[A[i]];
}
ans = min(ans, D[i] + min(val_s_all_n, val_s_all_b + W[i] + val_all_n_a) +
min(val_n_all_0, val_n_all_b + W[i] + val_all_s_a));
{
g[A[i]].emplace_back(B[i], i);
swap(g[A[i]][P[i]], g[A[i]].back());
g[B[i]].pop_back();
}
{
revg[B[i]].emplace_back(A[i], i);
swap(revg[B[i]][revP[i]], revg[B[i]].back());
revg[A[i]].pop_back();
}
}
cout << (ans == infL ? -1 : ans);
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |