#include <bits/stdc++.h>
#define maxn (int)(1e5+51)
#define all(x) x.begin(), x.end()
#define sz(x) (int) x.size()
#define endl '\n'
#define ll long long
#define pb push_back
#define ull unsigned long long
#define ii pair<int,int>
#define iii tuple<int,int,int>
#define inf 2000000001
#define mod 1000000007 //998244353
#define _ ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
using namespace std;
template<typename X, typename Y> bool ckmin(X& x, const Y& y) { return (y < x) ? (x=y,1):0; }
template<typename X, typename Y> bool ckmax(X& x, const Y& y) { return (x < y) ? (x=y,1):0; }
int grid[1001][1001], pr[1001][1001], le[1001], ri[1001], n, m, k;
int best(int x){
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
pr[i][j] = grid[i][j]>=x;
for(int j=1;j<=m;++j)
for(int i=1;i<=n;++i)
pr[i][j] = pr[i][j]==1?1+pr[i-1][j]:0;
int resp = 0;
for(int i=1;i<=n;++i){
stack<ii>l, r;
for(int j=1;j<=m;++j){
while(!l.empty()&&l.top().first>=pr[i][j])l.pop();
if(l.empty())le[j] = j-1;
else le[j] = j - l.top().second - 1;
l.push({pr[i][j],j});
}
for(int j=m;j>=1;--j){
while(!r.empty()&&r.top().first>=pr[i][j])r.pop();
if(r.empty())ri[j] = m-j;
else ri[j] = r.top().second - j - 1;
r.push({pr[i][j],j});
}
for(int j=1;j<=m;++j){
ckmax(resp,(le[j]+ri[j]+1)*pr[i][j]);
}
}
return resp;
}
int main(){_
// binary search the cheapest square
// grid[i][j] = 0 if c[i][j] < x, 1 if otherwise
// use monotonic stacks to find largest rectangle
// if size of largest rectangle >= k, increase l
// otherwise lower r
// total complexity: O(NMlog(1e9))
cin>>n>>m>>k;
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
cin>>grid[i][j];
int l = 1, r = 1e9, ans = 1, siz = 0;
while(l<=r){
int md = l + (r-l+1)/2;
int b = best(md);
if(b>=k)ans = md, siz = b, l = md + 1;
else r = md - 1;
}
cout<<ans<<" "<<siz<<endl;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
1 ms |
332 KB |
Output is correct |
2 |
Correct |
1 ms |
332 KB |
Output is correct |
3 |
Correct |
1 ms |
440 KB |
Output is correct |
4 |
Correct |
1 ms |
460 KB |
Output is correct |
5 |
Correct |
2 ms |
448 KB |
Output is correct |
6 |
Correct |
2 ms |
576 KB |
Output is correct |
7 |
Correct |
2 ms |
332 KB |
Output is correct |
8 |
Correct |
11 ms |
1152 KB |
Output is correct |
9 |
Correct |
20 ms |
2024 KB |
Output is correct |
10 |
Correct |
41 ms |
2204 KB |
Output is correct |
11 |
Correct |
77 ms |
2892 KB |
Output is correct |
12 |
Correct |
47 ms |
4376 KB |
Output is correct |
13 |
Correct |
53 ms |
1548 KB |
Output is correct |
14 |
Correct |
162 ms |
4036 KB |
Output is correct |
15 |
Correct |
149 ms |
4036 KB |
Output is correct |
16 |
Correct |
163 ms |
4616 KB |
Output is correct |
17 |
Correct |
222 ms |
4644 KB |
Output is correct |
18 |
Correct |
379 ms |
7796 KB |
Output is correct |
19 |
Correct |
477 ms |
7648 KB |
Output is correct |
20 |
Correct |
777 ms |
12160 KB |
Output is correct |
21 |
Correct |
837 ms |
13628 KB |
Output is correct |
22 |
Correct |
1008 ms |
17828 KB |
Output is correct |
23 |
Correct |
1032 ms |
17784 KB |
Output is correct |
24 |
Correct |
729 ms |
10636 KB |
Output is correct |
25 |
Correct |
862 ms |
10996 KB |
Output is correct |