// tem uma arvore
// cada companhia produz uma materia smp dif - cada uma tem no minimo
// uma industria, essa ficam nos vertices
// pode ter mais de uma industria numa msm cidade
// as vzs uma precisa de material da outra
// queremos minimizar a dist a ser percorrida ao precisar de uma materia da ind G
// query: a companhia u (com empresas em x1, x2,...) precisa
// de material da companhia v (com empresas em y1, y2, ...)
// qual a menor dist?
// lca + centroid
// pega de um centroid p outro
// guarda o mais prox e p subir do vertice p centroide e de um p outro
// usa o lca pra pegar a dist
// atualiza o centroid p cada empresa q lê
// vendo se ela cria um novo caminho minimo
// pega o min entre oq ja ta e o min entre o vertice ate o cara k (centroid)
// na query queremos o minimo de ir ate o centroid atual e a menor
// dist q ele tem pra algm empresa A
// lca em o(1) -> lca entre a e b é o cara na euler entre eles com menor nivel
#include "factories.h"
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 5 ;
const long long inf = 1e18 ;
const int maxl = 21 ;
int n, tab[maxl][maxn], log_[maxn], kra[maxn], dp[maxl][maxn], nivel[maxn], cent[maxn] ;
long long dist[maxn], resp[maxn], pos[maxn] ;
int sz[maxn], pai[maxn], timer ;
bool vis[maxn], mark[3*maxn] ;
int tin[maxn], tout[maxn] ;
vector<pair<int,int>> grafo[maxn] ;
vector<int> euler ;
int minn(int a, int b){return (nivel[a] < nivel[b] ? a : b) ; }
int lca(int u, int v){
int r = max(pos[v], pos[u]), l = min(pos[v], pos[u]) ;
int d = log2(r-l+1) ;
return minn(dp[d][l], dp[d][r+1-(1<<d)]) ;
}
long long find_dist(int a, int b){ return dist[a] + dist[b] - ((dist[lca(a, b)])<<1) ; }
void update_cent(int u){
int k = u ;
while(k){
resp[k] = min(resp[k], find_dist(u, k)) ;
k = pai[k] ;
}
}
void ini(int u){
int k = u ;
while(k){ resp[k] = inf ; k = pai[k] ; }
}
long long query(int x){
int k = x ; long long ans = inf ;
while(k){
if(resp[k] < ans) ans = min(ans, find_dist(x, k) + resp[k]) ;
k = pai[k] ;
}
return ans ;
}
long long Query(int S, int X[], int T, int Y[]) {
long long ans = inf ;
for(int i = 0 ; i < S ; i++) update_cent(X[i]+1) ;
for(int i = 0 ; i < T ; i++) ans = min(ans, query(Y[i]+1)) ;
for(int i = 0 ; i < S ; i++) ini(X[i]+1) ;
return ans ;
}
void dfs_cent(int v, int p){
sz[v] = 1 ;
for(auto a : grafo[v]){
if(cent[a.first] || a.first == p) continue ;
dfs_cent(a.first, v) ;
sz[v] += sz[a.first] ;
}
}
int find_cent(int v, int p, int szz){
for(auto a : grafo[v]){
if(a.first == p || cent[a.first] || (sz[a.first]<<1) <= szz) continue ;
return find_cent(a.first, v, szz) ;
}
return v ;
}
void make_cent(int v, int p){
dfs_cent(v, p) ;
int c = find_cent(v, p, sz[v]) ;
cent[c] = 1, pai[c] = p ;
for(auto a : grafo[c]){
if(cent[a.first]) continue ;
make_cent(a.first, c) ;
}
}
void dfs(int v, int p){
tin[v] = ++timer ;
pos[v] = euler.size() ;
euler.push_back(v) ;
for(auto a : grafo[v]){
if(a.first == p) continue ;
nivel[a.first] = nivel[v] + 1 ; dist[a.first] = dist[v] + a.second ;
dfs(a.first, v) ; euler.push_back(v) ;
}
}
void build(){
int qtd = euler.size() ;
for(int i = 0 ; (1<<i) <= qtd ; i++){
for(int j = 1 ; j + (1<<i) <= qtd ; j++){
if(!i) dp[i][j] = euler[j] ;
else dp[i][j] = minn(dp[i-1][j], dp[i-1][j+(1<<(i-1))]) ;
}
}
}
void Init(int N, int A[], int B[], int D[]) {
n = N ;
for(int i = 0 ; i < N - 1 ; i++){
grafo[A[i]+1].push_back({B[i]+1, D[i]}) ;
grafo[B[i]+1].push_back({A[i]+1, D[i]}) ;
}
euler.push_back(0) ;
dfs(1, 0) ;
make_cent(1, 0) ;
build() ;
for(int i = 0 ; i < N + 1 ; i++) resp[i] = inf ;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
23 ms |
24452 KB |
Output is correct |
2 |
Correct |
491 ms |
34220 KB |
Output is correct |
3 |
Correct |
608 ms |
34288 KB |
Output is correct |
4 |
Correct |
557 ms |
34244 KB |
Output is correct |
5 |
Correct |
731 ms |
34524 KB |
Output is correct |
6 |
Correct |
241 ms |
34272 KB |
Output is correct |
7 |
Correct |
612 ms |
34244 KB |
Output is correct |
8 |
Correct |
619 ms |
34268 KB |
Output is correct |
9 |
Correct |
751 ms |
34512 KB |
Output is correct |
10 |
Correct |
267 ms |
34208 KB |
Output is correct |
11 |
Correct |
622 ms |
34380 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
14 ms |
24140 KB |
Output is correct |
2 |
Correct |
1982 ms |
155668 KB |
Output is correct |
3 |
Correct |
2698 ms |
158992 KB |
Output is correct |
4 |
Correct |
762 ms |
157084 KB |
Output is correct |
5 |
Correct |
3786 ms |
187068 KB |
Output is correct |
6 |
Correct |
2860 ms |
160108 KB |
Output is correct |
7 |
Correct |
1516 ms |
58364 KB |
Output is correct |
8 |
Correct |
409 ms |
59020 KB |
Output is correct |
9 |
Correct |
1632 ms |
62432 KB |
Output is correct |
10 |
Correct |
1460 ms |
59632 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
23 ms |
24452 KB |
Output is correct |
2 |
Correct |
491 ms |
34220 KB |
Output is correct |
3 |
Correct |
608 ms |
34288 KB |
Output is correct |
4 |
Correct |
557 ms |
34244 KB |
Output is correct |
5 |
Correct |
731 ms |
34524 KB |
Output is correct |
6 |
Correct |
241 ms |
34272 KB |
Output is correct |
7 |
Correct |
612 ms |
34244 KB |
Output is correct |
8 |
Correct |
619 ms |
34268 KB |
Output is correct |
9 |
Correct |
751 ms |
34512 KB |
Output is correct |
10 |
Correct |
267 ms |
34208 KB |
Output is correct |
11 |
Correct |
622 ms |
34380 KB |
Output is correct |
12 |
Correct |
14 ms |
24140 KB |
Output is correct |
13 |
Correct |
1982 ms |
155668 KB |
Output is correct |
14 |
Correct |
2698 ms |
158992 KB |
Output is correct |
15 |
Correct |
762 ms |
157084 KB |
Output is correct |
16 |
Correct |
3786 ms |
187068 KB |
Output is correct |
17 |
Correct |
2860 ms |
160108 KB |
Output is correct |
18 |
Correct |
1516 ms |
58364 KB |
Output is correct |
19 |
Correct |
409 ms |
59020 KB |
Output is correct |
20 |
Correct |
1632 ms |
62432 KB |
Output is correct |
21 |
Correct |
1460 ms |
59632 KB |
Output is correct |
22 |
Correct |
3212 ms |
157180 KB |
Output is correct |
23 |
Correct |
2691 ms |
159468 KB |
Output is correct |
24 |
Correct |
4624 ms |
159812 KB |
Output is correct |
25 |
Correct |
4623 ms |
163496 KB |
Output is correct |
26 |
Correct |
4551 ms |
160208 KB |
Output is correct |
27 |
Correct |
6073 ms |
183400 KB |
Output is correct |
28 |
Correct |
1055 ms |
160556 KB |
Output is correct |
29 |
Correct |
4270 ms |
159708 KB |
Output is correct |
30 |
Correct |
4216 ms |
159384 KB |
Output is correct |
31 |
Correct |
4262 ms |
159888 KB |
Output is correct |
32 |
Correct |
1873 ms |
63276 KB |
Output is correct |
33 |
Correct |
394 ms |
58548 KB |
Output is correct |
34 |
Correct |
1236 ms |
55556 KB |
Output is correct |
35 |
Correct |
1250 ms |
55668 KB |
Output is correct |
36 |
Correct |
1647 ms |
56112 KB |
Output is correct |
37 |
Correct |
1664 ms |
56116 KB |
Output is correct |