#include <bits/stdc++.h>
#include "mushrooms.h"
using namespace std;
vector<int> a, b, sz;
// A es B gombak, es a kerdes
int sa, sb, pos, ert, x, adb;
// az a es b vektorok merete, pos: hagyadik gombatol vannak az ismeretlenek, ert=110 (gyok n), x a valasz az utolso kerdesre, adb: vegso valasz
// nehany egyszeru fuggveny
void pb(int x) {
sz.push_back(x);
}
void ap(int x) {
a.push_back(x);
}
void bp(int x) {
b.push_back(x);
}
void cl() {
sz.clear();
}
void add(int a) {
if (x%2) bp(a);
else ap(a);
}
void fadd(int a) {
if (x%2) ap(a);
else bp(a);
}
int kerd() {
return use_machine(sz);
}
void ek(int a) {
pb(0), pb(a);
x=kerd();
add(a),
cl();
}
int count_mushrooms(int n) {
// a vektorban vannak a biztos A tipusuak, B-ben a b tipusuak
ap(0);
ert=110;
// naivan meg lehet csinalni
if (n<220) {
for (int i=1; i<n; i++) ek(i);
return a.size();
}
// ket sima kerdes
for (int i=1; i<=2; i++) ek(i);
sa=a.size();
// egy kerdessel ket uj ertek
if (sa>1) {
pb(a[0]), pb(3), pb(a[1]), pb(4);
x=kerd();
add(4), x/=2;
add(3);
} else {
pb(b[0]), pb(3), pb(b[1]), pb(4);
x=kerd();
fadd(4), x/=2;
fadd(3);
}
pos=5;
sa=a.size(), sb=b.size();
while(max(sa, sb)<ert) {
/*
kicsit mas, mint amit megbeszeltunk:
A1A2A3 itt 3-at ki lehet talalni, az 1-2 akkor ha azonos
ha kulonbozo, akkor B1BA2A4A5, mind a 4-et ki lehet talalni hasonloan, ahogy megbeszeltuk
ha nincs eleg B, akkor a korabbi egyszerubb modszerrel kell kitalalni: A1A4 - 4 a paritasbol egyertelmu, 1 pedig a masodik bitbol
igy ket kerdesbol 4 uj elem lett, de ez legfeljebb ketszer tortenhet meg
*/
cl();
// a ket 25 soros resz ugyanaz, csak az A es B forditva van
if (sa>2) {
pb(a[0]), pb(pos), pb(a[1]), pb(pos+1), pb(a[2]), pb(pos+2);
x=kerd();
add(pos+2);
if (x<2) ap(pos), ap(pos+1), pos+=3;
else if (x>=4) bp(pos), bp(pos+1), pos+=3;
else {
if (sb>1) {
cl();
pb(b[0]), pb(pos), pb(b[1]), pb(a[0]), pb(pos+1), pb(a[1]), pb(pos+3), pb(a[2]), pb(pos+4);
x=kerd()-1;
add(pos+4);
x/=2;
add(pos+3);
x/=2;
add(pos+1), fadd(pos);
pos+=5;
} else {
cl();
pb(a[0]), pb(pos), pb(a[1]), pb(pos+3);
x=kerd();
add(pos+3), x/=2;
add(pos), fadd(pos+1);
pos+=4;
}
}
} else {
pb(b[0]), pb(pos), pb(b[1]), pb(pos+1), pb(b[2]), pb(pos+2);
x=kerd();
fadd(pos+2);
if (x<2) bp(pos), bp(pos+1), pos+=3;
else if (x>=4) ap(pos), ap(pos+1), pos+=3;
else {
if (sa>1) {
cl();
pb(a[0]), pb(pos), pb(a[1]), pb(b[0]), pb(pos+1), pb(b[1]), pb(pos+3), pb(b[2]), pb(pos+4);
x=kerd()-1;
fadd(pos+4);
x/=2;
fadd(pos+3);
x/=2;
fadd(pos+1), add(pos);
pos+=5;
} else {
cl();
pb(b[0]), pb(pos), pb(b[1]), pb(pos+3);
x=kerd();
fadd(pos+3), x/=2;
fadd(pos), add(pos+1);
pos+=4;
}
}
}
sa=a.size(), sb=b.size();
}
while(pos<n) {
// eleg sok azonos van, innentol A_A_A_....A_ kerdesek, az utolsorol pontosan lehet tudni, hogy mi
cl();
if (sa>=sb) {
for (int i=0; i<sa && pos+i<n; i++) {
pb(a[i]), pb(pos+i);
}
x=kerd();
int y=sz.back();
add(y);
pos=1+y;
int si=sz.size();
adb+=((si-2)/2-x/2);
} else {
for (int i=0; i<sb && pos+i<n; i++) {
pb(b[i]), pb(pos+i);
}
x=kerd();
int y=sz.back();
fadd(y);
pos=1+y;
adb+=(x/2);
}
sa=a.size(), sb=b.size();
}
return sa+adb;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
0 ms |
216 KB |
Output is correct |
2 |
Correct |
0 ms |
216 KB |
Output is correct |
3 |
Correct |
1 ms |
308 KB |
Output is correct |
4 |
Correct |
0 ms |
216 KB |
Output is correct |
5 |
Correct |
3 ms |
216 KB |
Output is correct |
6 |
Correct |
2 ms |
216 KB |
Output is correct |
7 |
Correct |
5 ms |
300 KB |
Output is correct |
8 |
Correct |
5 ms |
216 KB |
Output is correct |
9 |
Correct |
6 ms |
308 KB |
Output is correct |
10 |
Correct |
5 ms |
216 KB |
Output is correct |
11 |
Correct |
6 ms |
216 KB |
Output is correct |
12 |
Correct |
6 ms |
320 KB |
Output is correct |
13 |
Correct |
5 ms |
216 KB |
Output is correct |
14 |
Correct |
4 ms |
320 KB |
Output is correct |
15 |
Correct |
6 ms |
216 KB |
Output is correct |
16 |
Correct |
6 ms |
300 KB |
Output is correct |
17 |
Correct |
3 ms |
200 KB |
Output is correct |
18 |
Correct |
6 ms |
304 KB |
Output is correct |
19 |
Correct |
6 ms |
200 KB |
Output is correct |
20 |
Correct |
5 ms |
200 KB |
Output is correct |
21 |
Correct |
6 ms |
200 KB |
Output is correct |
22 |
Correct |
7 ms |
300 KB |
Output is correct |
23 |
Correct |
7 ms |
212 KB |
Output is correct |
24 |
Correct |
5 ms |
200 KB |
Output is correct |
25 |
Correct |
7 ms |
304 KB |
Output is correct |
26 |
Correct |
8 ms |
200 KB |
Output is correct |
27 |
Correct |
6 ms |
312 KB |
Output is correct |
28 |
Correct |
5 ms |
200 KB |
Output is correct |
29 |
Correct |
5 ms |
200 KB |
Output is correct |
30 |
Correct |
5 ms |
308 KB |
Output is correct |
31 |
Correct |
6 ms |
324 KB |
Output is correct |
32 |
Correct |
8 ms |
216 KB |
Output is correct |
33 |
Correct |
5 ms |
216 KB |
Output is correct |
34 |
Correct |
6 ms |
216 KB |
Output is correct |
35 |
Correct |
6 ms |
324 KB |
Output is correct |
36 |
Correct |
8 ms |
316 KB |
Output is correct |
37 |
Correct |
5 ms |
216 KB |
Output is correct |
38 |
Correct |
6 ms |
216 KB |
Output is correct |
39 |
Correct |
6 ms |
216 KB |
Output is correct |
40 |
Correct |
6 ms |
312 KB |
Output is correct |
41 |
Correct |
6 ms |
216 KB |
Output is correct |
42 |
Correct |
5 ms |
216 KB |
Output is correct |
43 |
Correct |
5 ms |
216 KB |
Output is correct |
44 |
Correct |
7 ms |
216 KB |
Output is correct |
45 |
Correct |
6 ms |
324 KB |
Output is correct |
46 |
Correct |
6 ms |
216 KB |
Output is correct |
47 |
Correct |
6 ms |
216 KB |
Output is correct |
48 |
Correct |
6 ms |
216 KB |
Output is correct |
49 |
Correct |
6 ms |
312 KB |
Output is correct |
50 |
Correct |
5 ms |
328 KB |
Output is correct |
51 |
Correct |
6 ms |
304 KB |
Output is correct |
52 |
Correct |
6 ms |
216 KB |
Output is correct |
53 |
Correct |
6 ms |
216 KB |
Output is correct |
54 |
Correct |
5 ms |
324 KB |
Output is correct |
55 |
Correct |
6 ms |
324 KB |
Output is correct |
56 |
Correct |
5 ms |
216 KB |
Output is correct |
57 |
Correct |
6 ms |
324 KB |
Output is correct |
58 |
Correct |
6 ms |
216 KB |
Output is correct |
59 |
Correct |
7 ms |
216 KB |
Output is correct |
60 |
Correct |
7 ms |
216 KB |
Output is correct |
61 |
Correct |
5 ms |
344 KB |
Output is correct |
62 |
Correct |
0 ms |
216 KB |
Output is correct |
63 |
Correct |
0 ms |
216 KB |
Output is correct |
64 |
Correct |
0 ms |
216 KB |
Output is correct |
65 |
Correct |
0 ms |
216 KB |
Output is correct |
66 |
Correct |
0 ms |
216 KB |
Output is correct |
67 |
Correct |
1 ms |
216 KB |
Output is correct |
68 |
Correct |
0 ms |
216 KB |
Output is correct |
69 |
Correct |
0 ms |
216 KB |
Output is correct |
70 |
Correct |
1 ms |
216 KB |
Output is correct |
71 |
Correct |
0 ms |
216 KB |
Output is correct |
72 |
Correct |
0 ms |
216 KB |
Output is correct |
73 |
Correct |
0 ms |
216 KB |
Output is correct |
74 |
Correct |
0 ms |
216 KB |
Output is correct |
75 |
Correct |
1 ms |
216 KB |
Output is correct |
76 |
Correct |
0 ms |
216 KB |
Output is correct |
77 |
Correct |
0 ms |
216 KB |
Output is correct |
78 |
Correct |
1 ms |
216 KB |
Output is correct |
79 |
Correct |
0 ms |
216 KB |
Output is correct |
80 |
Correct |
0 ms |
216 KB |
Output is correct |
81 |
Correct |
1 ms |
216 KB |
Output is correct |
82 |
Correct |
0 ms |
216 KB |
Output is correct |
83 |
Correct |
0 ms |
216 KB |
Output is correct |
84 |
Correct |
0 ms |
216 KB |
Output is correct |
85 |
Correct |
0 ms |
216 KB |
Output is correct |
86 |
Correct |
0 ms |
216 KB |
Output is correct |
87 |
Correct |
1 ms |
216 KB |
Output is correct |
88 |
Correct |
0 ms |
204 KB |
Output is correct |
89 |
Correct |
1 ms |
200 KB |
Output is correct |
90 |
Correct |
0 ms |
208 KB |
Output is correct |
91 |
Correct |
0 ms |
216 KB |
Output is correct |