Submission #522348

# Submission time Handle Problem Language Result Execution time Memory
522348 2022-02-04T16:15:20 Z blue I want to be the very best too! (NOI17_pokemonmaster) C++17
100 / 100
3528 ms 319780 KB
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
#include <cassert>
using namespace std;
 
using vi = vector<int>;
using pii = pair<int, int>;
using vvi = vector<vi>;
using vpii = vector<pii>;
 
const int mx = 50'000;
const int lg = 16;
 
#define sz(x) int(x.size())
#define dbg if(debugging)cerr
 
int R, C, Q;
int N;
 
vi L(mx), P(mx);
 
vi edge[mx];
 
void add_edge(int u, int v)
{
	edge[u].push_back(v);
	edge[v].push_back(u);
}
 
 
 
 
bool debugging = 1;
 
 
 
 
 
 
 
 
 
struct disjoint_set
{
	vi parent = vi(mx);
	vi subtree = vi(mx, 1);
	vpii peak = vpii(mx);
 
	disjoint_set()
	{
		for(int i = 0; i < mx; i++) 
		{
			parent[i] = i;
			peak[i] = {L[i], i};
		}
 
	}
 
	int root(int u)
	{
		if(parent[u] == u) return u;
		else return (parent[u] = root(parent[u]));
	}
 
	int getpeak(int u)
	{
		return peak[root(u)].second;
	}
 
	void join(int u, int v)
	{
		u = root(u);
		v = root(v);
 
		if(u == v) return;
 
		if(subtree[u] < subtree[v]) swap(u, v);
 
		parent[v] = u;
		subtree[u] += subtree[v];
		peak[u] = max(peak[u], peak[v]);
	}
 
	bool connected(int u, int v)
	{
		return root(u) == root(v);
	}
};
 
 
 
 
 
 
 
 
vi reach_children[mx];
vi reach_parent(mx);
 
vvi anc(mx, vi(1+lg));
 
vi subtree(mx, 1);
vi ord(1, -1);
vi ord_index(mx, 0);
vi depth(mx, 0);
 
int o_ct = 0;
 
 
void dfs(int u)
{
	ord.push_back(u);
	ord_index[u] = ++o_ct;
 
	for(int v : reach_children[u])
	{
		depth[v] = depth[u] + 1;
		dfs(v);
		subtree[u] += subtree[v];
	}
}
 
int ancestor(int u, int k)
{
	for(int e = 0; e <= lg; e++)
		if(k & (1 << e))
			u = anc[u][e];
 
	return u;
}
 
int lca(int u, int v)
{
	if(depth[u] > depth[v]) swap(u, v);
	v = ancestor(v, depth[v] - depth[u]);
 
	if(u == v) return u;
 
	for(int e = lg; e >= 0; e--)
	{
		if(anc[u][e] != anc[v][e])
		{
			u = anc[u][e];
			v = anc[v][e];
		}
	}
 
	return anc[u][0];
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
struct segtree
{
	int l;
	int r;
 
	int ct = 0;
 
	segtree* left = NULL;
	segtree* right = NULL;

	void insert(int I, int V);
 
	// void insert(int I, int V)
	// {
	// 	ct += V;
	// 	if(l != r)
	// 	{
	// 		int m = (l+r)/2;
 
	// 		if(I <= m) 
	// 		{
	// 			if(left == NULL) left = new segtree{l, m, 0, NULL, NULL};
	// 			left->insert(I, V);
	// 		}
	// 		else 
	// 		{
	// 			if(right == NULL) right = new segtree{m+1, r, 0, NULL, NULL};
	// 			right->insert(I, V);
	// 		}
	// 	}
	// }
 
	int count_leq(int I)
	{
		if(I >= r) return ct;
		else if(I < l) return 0;
		else
		{
			int lv = (left != NULL ? left->count_leq(I) : 0);
			int rv = (right != NULL ? right->count_leq(I) : 0);
			return lv + rv;
		}
	}
};

segtree* attach(segtree* st, int I, int V, int lv, int rv)
{
	segtree* ln = new segtree{I, I, V, NULL, NULL};

	segtree* rn = st;

	if(ln->l > rn->l) swap(ln, rn);

	assert(ln->r < rn->l);

	while(1)
	{
		if((lv+rv)/2 >= rn->r)
			rv = (lv+rv)/2;
		else if((lv+rv)/2+1 <= ln->l)
			lv = (lv+rv)/2+1;
		else break;
	}

	return new segtree{lv, rv, ln->ct + rn->ct, ln, rn};
}


void segtree::insert(int I, int V)
{
	ct += V;
	if(l != r)
	{
		int m = (l+r)/2;

		if(I <= m) 
		{
			if(left == NULL) left = new segtree{I, I, V, NULL, NULL};
			else if(left->l <= I && I <= left->r) left->insert(I, V);
			else left = attach(left, I, V, l, r);
		}
		else 
		{
			if(right == NULL) right = new segtree{I, I, V, NULL, NULL};
			else if(right->l <= I && I <= right->r) right->insert(I, V);
			else right = attach(right, I, V, l, r);
		}
	}
}
 
 
 
 
struct mst
{
	int l;
	int r;
 
	segtree v{0, mx, 0, NULL, NULL};
 
	mst* left = NULL;
	mst* right = NULL;
 
	mst()
	{
		;
	}
 
	mst(int L, int R)
	{
		l = L;
		r = R;
		if(l == r) return;
		int m = (l+r)/2;
		left = new mst(l, m);
		right = new mst(m+1, r);
	}
 
	void insert(int I, int J, int V)
	{
		// if(l == 1 && r == N) cerr << I << ' ' << J << " : " << V << '\n';
 
		v.insert(J, V);
 
		if(l != r)
		{
			if(I <= (l+r)/2) left->insert(I, J, V);
			else right->insert(I, J, V);
		}
	}
 
	int getcount(int L, int R, int X)
	{
		if(R < l || r < L) return 0;
		else if(L <= l && r <= R) return v.count_leq(X);
		else return left->getcount(L, R, X) + right->getcount(L, R, X);
	}
};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
int main()
{
	ios_base::sync_with_stdio(false);
	cin.tie(NULL);
 
	cin >> R >> C >> Q;
	N = R * C;
 
	for(int i = 0; i < N; i++) cin >> L[i];
 
	for(int i = 0; i < N; i++) cin >> P[i];
 
	for(int r = 0; r < R-1; r++)
		for(int c = 0; c < C; c++)
			add_edge(C*r + c, C*(r+1) + c);
 
	for(int r = 0; r < R; r++)
		for(int c = 0; c < C-1; c++)
			add_edge(C*r + c, C*r + (c+1));
 
 
 
 
 
 
 
 
 
 
 
 
	vpii ord;
	for(int i = 0; i < N; i++)
		ord.push_back({L[i], i});
 
	sort(ord.begin(), ord.end());
 
	disjoint_set DS;
 
 
 
 
	for(int i = 0; i < N; i++)
		reach_parent[i] = i;
 
	int rt;
 
	for(auto up: ord)
	{
		int u = up.second;
 
		rt = u;
 
		for(int v: edge[u])
		{
			if(L[v] >= L[u]) continue;
 
			if(DS.connected(u, v)) continue;
 
			int pu = DS.getpeak(u);
			int pv = DS.getpeak(v);
 
			reach_parent[pv] = pu;
			reach_children[pu].push_back(pv);
 
			DS.join(u, v);
		}
	}
 
	for(int i = 0; i < N; i++)
		anc[i][0] = reach_parent[i];
 
	for(int e = 1; e <= lg; e++)
		for(int i = 0; i < N; i++)
			anc[i][e] = anc[ anc[i][e-1] ][e-1];
 
	dfs(rt);
 
 
 
	vi prv_same(1+N, 0);//indexed by dfs order
 
 
	mst MST(1, N);
 
	// for(int i = 0; i < N; i++) cerr << ord_index[i] << ' ';
	// 	cerr << "\n";
 
 
 
	set<int> occ[1+mx];
	for(int p = 1; p <= mx; p++)
	{
		occ[p].insert(0);
	}
 
	for(int i = 0; i < N; i++)
		occ[P[i]].insert( ord_index[i] );
 
	for(int p = 1; p <= mx; p++)
	{
		int prvval = 0;
 
		for(int o : occ[p])
		{
			if(o == 0) continue;
 
			prv_same[o] = prvval;
 
			// cerr << "prv same " << o << " = " << prvval << '\n';
 
			prvval = o;
		}
	}
 
	for(int id = 1; id <= N; id++)
		MST.insert(id, prv_same[id], +1);
 
 
	
	// for(int i = 0; i < N; i++) cerr << reach_parent[i] << ' ' << ord_index[i] << '\n';
 
 
	// cerr << "answering queries\n";
 
	for(int j = 0; j < Q; j++)
	{
		int T;
		cin >> T;
 
		if(T == 1)
		{
			int x, y, p;
			cin >> x >> y >> p;
 
			x--;
			y--;
 
			int z = C*y + x;
 
 
			int oldp = P[z];
			int newp = p;
 
			P[z] = p;
 
			// cerr << oldp << ' ' << newp << '\n';
 
			if(oldp == newp) 
			{
				// cerr << "waste\n";
				continue;
			}
 
			// cerr << "z = " << z << '\n';
 
 
 
			auto oldfind = occ[oldp].find(ord_index[z]);
 
			int of = *oldfind;
 
			auto oldfind_prev = oldfind;
			oldfind_prev--;
 
			int ofp = *oldfind_prev;
 
			auto oldfind_next = oldfind;
			oldfind_next++;
 
			// cerr << "ofp = "
 
			// cerr << "part1\n";
 
			MST.insert(of, ofp, -1);
			if(oldfind_next != occ[oldp].end())
			{
				int ofn = *oldfind_next;
				MST.insert(ofn, of, -1);
				MST.insert(ofn, ofp, +1);
			}
 
 
 
 
 
 
			auto newfind = occ[newp].lower_bound(ord_index[z]);
 
			int nfn = -1;
			if(newfind != occ[newp].end())
				nfn = *newfind;
 
			newfind--;
			int nfp = *newfind;
 
			// cerr << "part2\n";
 
			MST.insert(ord_index[z], nfp, +1);
			if(nfn != -1)
			{
				MST.insert(nfn, nfp, -1);
				MST.insert(nfn, ord_index[z], +1);
			}
 
 
			occ[oldp].erase(ord_index[z]);
			occ[newp].insert(ord_index[z]);
 
		}
		else
		{
			int x, y, l;
			cin >> x >> y >> l;
 
			x--;
			y--;
 
			set<int> res;
 
			int z = C*y + x;
 
			if(L[z] > l)
			{
				cout << 0 << '\n';
				continue;
			}
 
			// cerr << "z1 = " << z << '\n';
 
			for(int e = lg; e >= 0; e--)
				if(L[ anc[z][e] ] <= l)
					z = anc[z][e];
 
			// cerr << "z2 = " << z << '\n';
 
			int li = ord_index[z];
			int ri = ord_index[z] + subtree[z] - 1;
 
			// cerr << li << ' ' << ri << '\n';
 
			cout << MST.getcount(li, ri, li-1) << '\n';
		}
	}
}

Compilation message

pokemonmaster.cpp: In function 'int main()':
pokemonmaster.cpp:396:5: warning: 'rt' may be used uninitialized in this function [-Wmaybe-uninitialized]
  396 |  dfs(rt);
      |  ~~~^~~~
# Verdict Execution time Memory Grader output
1 Correct 146 ms 103800 KB Output is correct
2 Correct 181 ms 104536 KB Output is correct
3 Correct 244 ms 99436 KB Output is correct
4 Correct 138 ms 104284 KB Output is correct
5 Correct 171 ms 104508 KB Output is correct
6 Correct 191 ms 97028 KB Output is correct
7 Correct 132 ms 103648 KB Output is correct
8 Correct 193 ms 104508 KB Output is correct
9 Correct 150 ms 104052 KB Output is correct
10 Correct 190 ms 98088 KB Output is correct
11 Correct 165 ms 104508 KB Output is correct
12 Correct 159 ms 81008 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 143 ms 102844 KB Output is correct
2 Correct 150 ms 102548 KB Output is correct
3 Correct 184 ms 95924 KB Output is correct
4 Correct 141 ms 102544 KB Output is correct
5 Correct 202 ms 103100 KB Output is correct
6 Correct 193 ms 93552 KB Output is correct
7 Correct 150 ms 101456 KB Output is correct
8 Correct 174 ms 101340 KB Output is correct
9 Correct 161 ms 101508 KB Output is correct
10 Correct 200 ms 94472 KB Output is correct
11 Correct 169 ms 100992 KB Output is correct
12 Correct 186 ms 77372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 392 ms 105448 KB Output is correct
2 Correct 635 ms 116400 KB Output is correct
3 Correct 726 ms 122068 KB Output is correct
4 Correct 729 ms 121552 KB Output is correct
5 Correct 597 ms 116812 KB Output is correct
6 Correct 399 ms 103060 KB Output is correct
7 Correct 697 ms 115196 KB Output is correct
8 Correct 615 ms 115132 KB Output is correct
9 Correct 648 ms 115172 KB Output is correct
10 Correct 652 ms 115256 KB Output is correct
11 Correct 659 ms 115216 KB Output is correct
12 Correct 641 ms 115072 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 146 ms 103800 KB Output is correct
2 Correct 181 ms 104536 KB Output is correct
3 Correct 244 ms 99436 KB Output is correct
4 Correct 138 ms 104284 KB Output is correct
5 Correct 171 ms 104508 KB Output is correct
6 Correct 191 ms 97028 KB Output is correct
7 Correct 132 ms 103648 KB Output is correct
8 Correct 193 ms 104508 KB Output is correct
9 Correct 150 ms 104052 KB Output is correct
10 Correct 190 ms 98088 KB Output is correct
11 Correct 165 ms 104508 KB Output is correct
12 Correct 159 ms 81008 KB Output is correct
13 Correct 399 ms 108756 KB Output is correct
14 Correct 1722 ms 195528 KB Output is correct
15 Correct 3442 ms 319780 KB Output is correct
16 Correct 1059 ms 148276 KB Output is correct
17 Correct 1685 ms 193248 KB Output is correct
18 Correct 795 ms 119800 KB Output is correct
19 Correct 272 ms 105924 KB Output is correct
20 Correct 1488 ms 179692 KB Output is correct
21 Correct 562 ms 121156 KB Output is correct
22 Correct 2218 ms 236540 KB Output is correct
23 Correct 1809 ms 209952 KB Output is correct
24 Correct 1803 ms 186872 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 146 ms 103800 KB Output is correct
2 Correct 181 ms 104536 KB Output is correct
3 Correct 244 ms 99436 KB Output is correct
4 Correct 138 ms 104284 KB Output is correct
5 Correct 171 ms 104508 KB Output is correct
6 Correct 191 ms 97028 KB Output is correct
7 Correct 132 ms 103648 KB Output is correct
8 Correct 193 ms 104508 KB Output is correct
9 Correct 150 ms 104052 KB Output is correct
10 Correct 190 ms 98088 KB Output is correct
11 Correct 165 ms 104508 KB Output is correct
12 Correct 159 ms 81008 KB Output is correct
13 Correct 143 ms 102844 KB Output is correct
14 Correct 150 ms 102548 KB Output is correct
15 Correct 184 ms 95924 KB Output is correct
16 Correct 141 ms 102544 KB Output is correct
17 Correct 202 ms 103100 KB Output is correct
18 Correct 193 ms 93552 KB Output is correct
19 Correct 150 ms 101456 KB Output is correct
20 Correct 174 ms 101340 KB Output is correct
21 Correct 161 ms 101508 KB Output is correct
22 Correct 200 ms 94472 KB Output is correct
23 Correct 169 ms 100992 KB Output is correct
24 Correct 186 ms 77372 KB Output is correct
25 Correct 392 ms 105448 KB Output is correct
26 Correct 635 ms 116400 KB Output is correct
27 Correct 726 ms 122068 KB Output is correct
28 Correct 729 ms 121552 KB Output is correct
29 Correct 597 ms 116812 KB Output is correct
30 Correct 399 ms 103060 KB Output is correct
31 Correct 697 ms 115196 KB Output is correct
32 Correct 615 ms 115132 KB Output is correct
33 Correct 648 ms 115172 KB Output is correct
34 Correct 652 ms 115256 KB Output is correct
35 Correct 659 ms 115216 KB Output is correct
36 Correct 641 ms 115072 KB Output is correct
37 Correct 399 ms 108756 KB Output is correct
38 Correct 1722 ms 195528 KB Output is correct
39 Correct 3442 ms 319780 KB Output is correct
40 Correct 1059 ms 148276 KB Output is correct
41 Correct 1685 ms 193248 KB Output is correct
42 Correct 795 ms 119800 KB Output is correct
43 Correct 272 ms 105924 KB Output is correct
44 Correct 1488 ms 179692 KB Output is correct
45 Correct 562 ms 121156 KB Output is correct
46 Correct 2218 ms 236540 KB Output is correct
47 Correct 1809 ms 209952 KB Output is correct
48 Correct 1803 ms 186872 KB Output is correct
49 Correct 442 ms 110416 KB Output is correct
50 Correct 1674 ms 197336 KB Output is correct
51 Correct 3528 ms 319288 KB Output is correct
52 Correct 1073 ms 147268 KB Output is correct
53 Correct 1674 ms 193760 KB Output is correct
54 Correct 879 ms 117252 KB Output is correct
55 Correct 260 ms 103868 KB Output is correct
56 Correct 1502 ms 179044 KB Output is correct
57 Correct 593 ms 119560 KB Output is correct
58 Correct 2282 ms 235148 KB Output is correct
59 Correct 1867 ms 208308 KB Output is correct
60 Correct 1903 ms 185748 KB Output is correct