Submission #496675

# Submission time Handle Problem Language Result Execution time Memory
496675 2021-12-21T19:32:55 Z PedroBigMan Ancient Books (IOI17_books) C++17
50 / 100
1717 ms 795536 KB
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "books.h"
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 

template<class T=ll>
class SparseTable //Range Minimum Queries
{
    public:
    ll N; 
    vector<T> a;
    vector<vector<T> > v;
    
    SparseTable() {N=0LL;}
    SparseTable(vector<T> b)
    {
        a=b; N=a.size();
        ll lo=(ll) floor((double) log2(N)) +1LL;
        vector<T> xx; 
        REP(i,0,lo) {xx.pb(-1);} REP(i,0,N) {v.pb(xx);}
        REP(step,0LL,lo)
        {
            REP(i,0,N-(1LL<<step)+1LL)
            {
                if(step==0) {v[i][0]=a[i];}
                else {v[i][step]=max(v[i][step-1],v[i+(1LL<<(step-1))][step-1]);}
            }
        }
    }
    
    T query(ll l, ll r)
    {
        ll step=(ll) floor((double) log2(r-l+1LL));
        return max(v[l][step],v[r-(1LL<<step)+1LL][step]);
    }
};

class ST
{
    public:
    ll N;
    
    class SV //seg value
    {
        public:
        ll a; 
        SV() {a=0LL;}
        SV(ll x) {a=x;}
        
        SV operator & (SV X) {SV ANS(a+X.a); return ANS;}
    };
      
    class LV //lazy value
    {
        public:
        ll a;
        LV() {a=0LL;}
        LV(ll x) {a=x;}
        
        LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
    };
    
    SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
    {
        SV X(p[c].a+(range[c].ss-range[c].ff+1)*lazy[c].a);
        return X;
    }
    
    SV neuts; LV neutl;
    
    vector<SV> p;
    vector<LV> lazy;
    vector<pl> range;
    
    ST() {N=0LL;}
    ST(vector<ll> arr)
    {
        N = (ll) 1<<(ll) ceil(log2(arr.size()));
        REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
        REP(i,0,N) {p.pb(neuts);}
        REP(i,0,arr.size()) {SV X(arr[i]); p.pb(X); range[i+N]=mp(i,i);}
        REP(i,arr.size(),N) {p.pb(neuts); range[i+N]=mp(i,i);}
        ll cur = N-1;
        while(cur>0)
        {
            p[cur]=p[2*cur]&p[2*cur+1];
            range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
            cur--;
        }
        REP(i,0,2*N) {lazy.pb(neutl);}
    }
    
    void prop(ll c) //how lazy values propagate
    {
        lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
        lazy[c]=neutl;
    }
    
    SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return neuts;}
        if(x>=a && y<=b) {return upval(c);}
        prop(c);
		p[c]=upval(2*c)&upval(2*c+1);
        SV ans = query(a,b,2*c)&query(a,b,2*c+1);
        return ans;
    }
    
    void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return ;}
        if(x>=a && y<=b) 
        {
            lazy[c]=s&lazy[c]; 
            return;
        }
		prop(c);
        update(s,a,b,2*c); update(s,a,b,2*c+1);
        p[c]=upval(2*c)&upval(2*c+1);
    }
};

vector<vector<ll> > CycleDecomp(vector<int> p) //cycle decomposition of permutation
{
	ll N = p.size(); vector<vector<ll> > ans; vector<ll> cur;
	vector<bool> visited; REP(i,0,N) {visited.pb(false);} 
	ll node;
	REP(i,0,N)
	{
		if(visited[i]) {continue;}
		node=i; cur.pb(node); node=p[node];
		while(node!=i)
		{
			cur.pb(node); node=p[node];
		}
		REP(i,0,cur.size()) {visited[cur[i]]=true;}
		ans.pb(cur);
		cur.clear();
	}
	return ans;
}

class WDiGraph
{
    public:
    ll N;
    vector<vector<pl> > adj; 
    vector<bool> visited;
    vector<bool> pr;
	
    WDiGraph(vector<vector<pl> > ad)
    {
        adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false); pr.pb(false);}
    }
    
    vector<ll> Djikstra(ll s)
    {
        vector<ll> d; REP(i,0,N) {d.pb(INF);}
        d[s]=0;
        priority_queue<pl> q;
        q.push(mp(0,s));
        ll cur;
        while(!q.empty())
        {
            cur=q.top().ss; q.pop();
            if(pr[cur]) {continue;}
            pr[cur]=true; 
            REP(i,0,adj[cur].size())
            {
                if(d[adj[cur][i].ff]>d[cur]+adj[cur][i].ss)
                {
                    d[adj[cur][i].ff]=d[cur]+adj[cur][i].ss;
                    q.push(mp(-d[adj[cur][i].ff],adj[cur][i].ff));
                }
            }
        }
        return d;
    }
};

ll minimum_walk(vector<int> p, int s) 
{
	ll N = p.size();
	vector<vector<ll> > C = CycleDecomp(p);
	vector<pl> range;
	REP(i,0,C.size()) {range.pb({*min_element(whole(C[i])),*max_element(whole(C[i]))});}
	vector<ll> xx; VV(xx,N-1,0); ST S(xx);
	REP(i,0,range.size()) {if(range[i].ff==range[i].ss) {continue;} S.update(1,range[i].ff,range[i].ss-1);}
	vector<bool> in; VV(in,N-1,false);
	REP(i,0,N-1) {if(S.query(i,i).a>0) {in[i]=true;}}
	ll l=0,r=N-2; 
	while(l<s && !in[l]) {l++;}
	while(r>=s && !in[r]) {r--;}
	ll ans=0LL;
	REP(i,l,r+1) {if(!in[i]) {ans+=2LL;}}
	REP(i,0,N) {ans+=((ll) (abs(p[i]-i)));}
	ll T=s; while(T<N-1 && in[T]) {T++;} 
	ll SS;
	REP(i,0,C.size()) {sort(whole(C[i]));}
	vector<vector<pl> > adj; VV(adj,C.size(),{});
	vector<ll> rep; VV(rep,N,-1); REP(i,0,C.size()) {REP(j,0,C[i].size()) {rep[C[i][j]]=i;}}
	SS=rep[s]; T=rep[T];
	vector<ll>::iterator it;
	REP(i,0,N-1) {adj[rep[i]].pb({rep[i+1],1LL}); adj[rep[i+1]].pb({rep[i],1LL});} 
	vector<ll> lend,rend; REP(i,0,N) {lend.pb(range[rep[i]].ff); rend.pb(range[rep[i]].ss);}
	SparseTable L(lend); SparseTable R(rend);
	REP(i,0,C.size())
	{
		ll LL = L.query(range[i].ff,range[i].ss); ll RR = R.query(range[i].ff,range[i].ss);
		if(LL<range[i].ff) {adj[i].pb({rep[LL],0LL});}
		if(RR>range[i].ss) {adj[i].pb({rep[RR],0LL});}
	}
	WDiGraph G(adj); vector<ll> d = G.Djikstra(SS); ans+=2LL*d[T];
	return ans;
}

Compilation message

books.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    5 | #pragma GCC optimization ("O3")
      | 
books.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 244 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 244 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 716 KB Output is correct
20 Correct 1 ms 716 KB Output is correct
21 Correct 1 ms 844 KB Output is correct
22 Correct 1 ms 844 KB Output is correct
23 Correct 1 ms 844 KB Output is correct
24 Correct 1 ms 844 KB Output is correct
25 Correct 1 ms 716 KB Output is correct
26 Correct 1 ms 716 KB Output is correct
27 Correct 1 ms 716 KB Output is correct
28 Correct 1 ms 716 KB Output is correct
29 Correct 1 ms 844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 244 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 716 KB Output is correct
20 Correct 1 ms 716 KB Output is correct
21 Correct 1 ms 844 KB Output is correct
22 Correct 1 ms 844 KB Output is correct
23 Correct 1 ms 844 KB Output is correct
24 Correct 1 ms 844 KB Output is correct
25 Correct 1 ms 716 KB Output is correct
26 Correct 1 ms 716 KB Output is correct
27 Correct 1 ms 716 KB Output is correct
28 Correct 1 ms 716 KB Output is correct
29 Correct 1 ms 844 KB Output is correct
30 Correct 1241 ms 617244 KB Output is correct
31 Correct 1241 ms 616888 KB Output is correct
32 Correct 1381 ms 795536 KB Output is correct
33 Correct 1443 ms 741048 KB Output is correct
34 Correct 1519 ms 741156 KB Output is correct
35 Correct 1475 ms 718208 KB Output is correct
36 Correct 1415 ms 673112 KB Output is correct
37 Correct 1188 ms 634904 KB Output is correct
38 Correct 1176 ms 625712 KB Output is correct
39 Correct 1182 ms 624680 KB Output is correct
40 Correct 1193 ms 622012 KB Output is correct
41 Correct 1221 ms 620280 KB Output is correct
42 Correct 1263 ms 623052 KB Output is correct
43 Correct 1717 ms 747248 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 1 ms 844 KB 3rd lines differ - on the 1st token, expected: '3304', found: '3312'
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 244 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 716 KB Output is correct
20 Correct 1 ms 716 KB Output is correct
21 Correct 1 ms 844 KB Output is correct
22 Correct 1 ms 844 KB Output is correct
23 Correct 1 ms 844 KB Output is correct
24 Correct 1 ms 844 KB Output is correct
25 Correct 1 ms 716 KB Output is correct
26 Correct 1 ms 716 KB Output is correct
27 Correct 1 ms 716 KB Output is correct
28 Correct 1 ms 716 KB Output is correct
29 Correct 1 ms 844 KB Output is correct
30 Correct 1241 ms 617244 KB Output is correct
31 Correct 1241 ms 616888 KB Output is correct
32 Correct 1381 ms 795536 KB Output is correct
33 Correct 1443 ms 741048 KB Output is correct
34 Correct 1519 ms 741156 KB Output is correct
35 Correct 1475 ms 718208 KB Output is correct
36 Correct 1415 ms 673112 KB Output is correct
37 Correct 1188 ms 634904 KB Output is correct
38 Correct 1176 ms 625712 KB Output is correct
39 Correct 1182 ms 624680 KB Output is correct
40 Correct 1193 ms 622012 KB Output is correct
41 Correct 1221 ms 620280 KB Output is correct
42 Correct 1263 ms 623052 KB Output is correct
43 Correct 1717 ms 747248 KB Output is correct
44 Incorrect 1 ms 844 KB 3rd lines differ - on the 1st token, expected: '3304', found: '3312'
45 Halted 0 ms 0 KB -