Submission #496656

# Submission time Handle Problem Language Result Execution time Memory
496656 2021-12-21T18:42:30 Z PedroBigMan Ancient Books (IOI17_books) C++14
70 / 100
2000 ms 231288 KB
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "books.h"
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 


class ST
{
    public:
    ll N;
    
    class SV //seg value
    {
        public:
        ll a; 
        SV() {a=0LL;}
        SV(ll x) {a=x;}
        
        SV operator & (SV X) {SV ANS(a+X.a); return ANS;}
    };
      
    class LV //lazy value
    {
        public:
        ll a;
        LV() {a=0LL;}
        LV(ll x) {a=x;}
        
        LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
    };
    
    SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
    {
        SV X(p[c].a+(range[c].ss-range[c].ff+1)*lazy[c].a);
        return X;
    }
    
    SV neuts; LV neutl;
    
    vector<SV> p;
    vector<LV> lazy;
    vector<pl> range;
    
    ST() {N=0LL;}
    ST(vector<ll> arr)
    {
        N = (ll) 1<<(ll) ceil(log2(arr.size()));
        REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
        REP(i,0,N) {p.pb(neuts);}
        REP(i,0,arr.size()) {SV X(arr[i]); p.pb(X); range[i+N]=mp(i,i);}
        REP(i,arr.size(),N) {p.pb(neuts); range[i+N]=mp(i,i);}
        ll cur = N-1;
        while(cur>0)
        {
            p[cur]=p[2*cur]&p[2*cur+1];
            range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
            cur--;
        }
        REP(i,0,2*N) {lazy.pb(neutl);}
    }
    
    void prop(ll c) //how lazy values propagate
    {
        lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
        lazy[c]=neutl;
    }
    
    SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return neuts;}
        if(x>=a && y<=b) {return upval(c);}
        prop(c);
		p[c]=upval(2*c)&upval(2*c+1);
        SV ans = query(a,b,2*c)&query(a,b,2*c+1);
        return ans;
    }
    
    void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return ;}
        if(x>=a && y<=b) 
        {
            lazy[c]=s&lazy[c]; 
            return;
        }
		prop(c);
        update(s,a,b,2*c); update(s,a,b,2*c+1);
        p[c]=upval(2*c)&upval(2*c+1);
    }
};

vector<vector<ll> > CycleDecomp(vector<int> p) //cycle decomposition of permutation
{
	ll N = p.size(); vector<vector<ll> > ans; vector<ll> cur;
	vector<bool> visited; REP(i,0,N) {visited.pb(false);} 
	ll node;
	REP(i,0,N)
	{
		if(visited[i]) {continue;}
		node=i; cur.pb(node); node=p[node];
		while(node!=i)
		{
			cur.pb(node); node=p[node];
		}
		REP(i,0,cur.size()) {visited[cur[i]]=true;}
		ans.pb(cur);
		cur.clear();
	}
	return ans;
}

class WDiGraph
{
    public:
    ll N;
    vector<vector<pl> > adj; 
    vector<bool> visited;
    vector<bool> pr;
	
    WDiGraph(vector<vector<pl> > ad)
    {
        adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false); pr.pb(false);}
    }
    
    vector<ll> Djikstra(ll s)
    {
        vector<ll> d; REP(i,0,N) {d.pb(INF);}
        d[s]=0;
        priority_queue<pl> q;
        q.push(mp(0,s));
        ll cur;
        while(!q.empty())
        {
            cur=q.top().ss; q.pop();
            if(pr[cur]) {continue;}
            pr[cur]=true; 
            REP(i,0,adj[cur].size())
            {
                if(d[adj[cur][i].ff]>d[cur]+adj[cur][i].ss)
                {
                    d[adj[cur][i].ff]=d[cur]+adj[cur][i].ss;
                    q.push(mp(-d[adj[cur][i].ff],adj[cur][i].ff));
                }
            }
        }
        return d;
    }
};

ll minimum_walk(vector<int> p, int s) 
{
	ll N = p.size();
	vector<vector<ll> > C = CycleDecomp(p);
	vector<pl> range;
	REP(i,0,C.size()) {range.pb({*min_element(whole(C[i])),*max_element(whole(C[i]))});}
	vector<ll> xx; VV(xx,N-1,0); ST S(xx);
	REP(i,0,range.size()) {if(range[i].ff==range[i].ss) {continue;} S.update(1,range[i].ff,range[i].ss-1);}
	vector<bool> in; VV(in,N-1,false);
	REP(i,0,N-1) {if(S.query(i,i).a>0) {in[i]=true;}}
	ll l=0,r=N-2; 
	while(l<s && !in[l]) {l++;}
	while(r>=s && !in[r]) {r--;}
	ll ans=0LL;
	REP(i,l,r+1) {if(!in[i]) {ans+=2LL;}}
	REP(i,0,N) {ans+=((ll) (abs(p[i]-i)));}
	ll T=s; while(T<N-1 && in[T]) {T++;} 
	ll SS;
	REP(i,0,C.size()) {sort(whole(C[i]));}
	vector<vector<pl> > adj; VV(adj,C.size(),{});
	vector<ll> rep; VV(rep,N,-1); REP(i,0,C.size()) {REP(j,0,C[i].size()) {rep[C[i][j]]=i;}}
	SS=rep[s]; T=rep[T];
	vector<ll>::iterator it;
	REP(i,0,N-1) {adj[rep[i]].pb({rep[i+1],1LL}); adj[rep[i+1]].pb({rep[i],1LL});} 
	if(s==0) {return ans;}
	REP(i,0,C.size())
	{
		REP(j,i+1,C.size())
		{
			it = lower_bound(whole(C[j]),range[i].ff);
			if(it==C[j].end() || (*it)>range[i].ss) {continue;}
			it = lower_bound(whole(C[i]),range[j].ff);
			if(it==C[i].end() || (*it)>range[j].ss) {continue;}
			adj[i].pb({j,0}); adj[j].pb({i,0});
		}
	}
	WDiGraph G(adj); vector<ll> d = G.Djikstra(SS); ans+=2LL*d[T];
	return ans;
}

Compilation message

books.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    5 | #pragma GCC optimization ("O3")
      | 
books.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 276 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 276 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 332 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 2 ms 460 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 332 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 404 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 276 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 332 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 2 ms 460 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 332 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 404 KB Output is correct
30 Correct 524 ms 162824 KB Output is correct
31 Correct 512 ms 148228 KB Output is correct
32 Correct 563 ms 231288 KB Output is correct
33 Correct 602 ms 204900 KB Output is correct
34 Correct 581 ms 204912 KB Output is correct
35 Correct 591 ms 191764 KB Output is correct
36 Correct 544 ms 166972 KB Output is correct
37 Correct 536 ms 149528 KB Output is correct
38 Correct 498 ms 144004 KB Output is correct
39 Correct 453 ms 143608 KB Output is correct
40 Correct 468 ms 141108 KB Output is correct
41 Correct 489 ms 144912 KB Output is correct
42 Correct 476 ms 146176 KB Output is correct
43 Correct 631 ms 207700 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 588 KB Output is correct
2 Correct 2 ms 588 KB Output is correct
3 Correct 2 ms 588 KB Output is correct
4 Correct 2 ms 588 KB Output is correct
5 Correct 3 ms 588 KB Output is correct
6 Correct 2 ms 588 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 2 ms 588 KB Output is correct
9 Correct 3 ms 588 KB Output is correct
10 Correct 2 ms 588 KB Output is correct
11 Correct 2 ms 460 KB Output is correct
12 Correct 2 ms 460 KB Output is correct
13 Correct 2 ms 464 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 1 ms 460 KB Output is correct
16 Correct 1 ms 460 KB Output is correct
17 Correct 2 ms 588 KB Output is correct
18 Correct 2 ms 588 KB Output is correct
19 Correct 2 ms 460 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 276 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 332 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 1 ms 460 KB Output is correct
22 Correct 2 ms 460 KB Output is correct
23 Correct 1 ms 460 KB Output is correct
24 Correct 1 ms 460 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 1 ms 332 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 404 KB Output is correct
30 Correct 524 ms 162824 KB Output is correct
31 Correct 512 ms 148228 KB Output is correct
32 Correct 563 ms 231288 KB Output is correct
33 Correct 602 ms 204900 KB Output is correct
34 Correct 581 ms 204912 KB Output is correct
35 Correct 591 ms 191764 KB Output is correct
36 Correct 544 ms 166972 KB Output is correct
37 Correct 536 ms 149528 KB Output is correct
38 Correct 498 ms 144004 KB Output is correct
39 Correct 453 ms 143608 KB Output is correct
40 Correct 468 ms 141108 KB Output is correct
41 Correct 489 ms 144912 KB Output is correct
42 Correct 476 ms 146176 KB Output is correct
43 Correct 631 ms 207700 KB Output is correct
44 Correct 2 ms 588 KB Output is correct
45 Correct 2 ms 588 KB Output is correct
46 Correct 2 ms 588 KB Output is correct
47 Correct 2 ms 588 KB Output is correct
48 Correct 3 ms 588 KB Output is correct
49 Correct 2 ms 588 KB Output is correct
50 Correct 3 ms 588 KB Output is correct
51 Correct 2 ms 588 KB Output is correct
52 Correct 3 ms 588 KB Output is correct
53 Correct 2 ms 588 KB Output is correct
54 Correct 2 ms 460 KB Output is correct
55 Correct 2 ms 460 KB Output is correct
56 Correct 2 ms 464 KB Output is correct
57 Correct 1 ms 460 KB Output is correct
58 Correct 1 ms 460 KB Output is correct
59 Correct 1 ms 460 KB Output is correct
60 Correct 2 ms 588 KB Output is correct
61 Correct 2 ms 588 KB Output is correct
62 Correct 2 ms 460 KB Output is correct
63 Correct 1 ms 460 KB Output is correct
64 Execution timed out 2090 ms 212476 KB Time limit exceeded
65 Halted 0 ms 0 KB -