Submission #496654

# Submission time Handle Problem Language Result Execution time Memory
496654 2021-12-21T18:39:41 Z PedroBigMan Ancient Books (IOI17_books) C++14
42 / 100
2000 ms 215592 KB
/*
Author of all code: Pedro BIGMAN Dias
Last edit: 15/02/2021
*/
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")
#pragma GCC optimize("Ofast")
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#include <string>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <deque>
#include <list>
#include <iomanip>
#include <stdlib.h>
#include <time.h>
#include <cstring>
#include "books.h"
using namespace std;
typedef long long int ll;
typedef unsigned long long int ull;
typedef long double ld;
#define REP(i,a,b) for(ll i=(ll) a; i<(ll) b; i++)
#define pb push_back
#define mp make_pair
#define pl pair<ll,ll>
#define ff first
#define ss second
#define whole(x) x.begin(),x.end()
#define DEBUG(i) cout<<"Pedro Is The Master "<<i<<endl
#define INF 500000000LL
#define EPS 0.00000001
#define pi 3.14159
#define VV(vvvv,NNNN,xxxx); REP(i,0,NNNN) {vvvv.pb(xxxx);}
ll mod=1000000007LL;

template<class A=ll> 
void Out(vector<A> a) {REP(i,0,a.size()) {cout<<a[i]<<" ";} cout<<endl;}

template<class A=ll>
void In(vector<A> &a, ll N) {A cur; REP(i,0,N) {cin>>cur; a.pb(cur);}} 


class ST
{
    public:
    ll N;
    
    class SV //seg value
    {
        public:
        ll a; 
        SV() {a=0LL;}
        SV(ll x) {a=x;}
        
        SV operator & (SV X) {SV ANS(a+X.a); return ANS;}
    };
      
    class LV //lazy value
    {
        public:
        ll a;
        LV() {a=0LL;}
        LV(ll x) {a=x;}
        
        LV operator & (LV X) {LV ANS(a+X.a); return ANS;}
    };
    
    SV upval(ll c) //how lazy values modify a seg value inside a node, c=current node
    {
        SV X(p[c].a+(range[c].ss-range[c].ff+1)*lazy[c].a);
        return X;
    }
    
    SV neuts; LV neutl;
    
    vector<SV> p;
    vector<LV> lazy;
    vector<pl> range;
    
    ST() {N=0LL;}
    ST(vector<ll> arr)
    {
        N = (ll) 1<<(ll) ceil(log2(arr.size()));
        REP(i,0,2*N) {range.pb(mp(0LL,0LL));}
        REP(i,0,N) {p.pb(neuts);}
        REP(i,0,arr.size()) {SV X(arr[i]); p.pb(X); range[i+N]=mp(i,i);}
        REP(i,arr.size(),N) {p.pb(neuts); range[i+N]=mp(i,i);}
        ll cur = N-1;
        while(cur>0)
        {
            p[cur]=p[2*cur]&p[2*cur+1];
            range[cur]=mp(range[2*cur].ff,range[2*cur+1].ss);
            cur--;
        }
        REP(i,0,2*N) {lazy.pb(neutl);}
    }
    
    void prop(ll c) //how lazy values propagate
    {
        lazy[2*c]=lazy[c]&lazy[2*c]; lazy[2*c+1]=lazy[c]&lazy[2*c+1];
        lazy[c]=neutl;
    }
    
    SV query(ll a,ll b, ll c=1LL) //range [a,b], current node. initially: query(a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return neuts;}
        if(x>=a && y<=b) {return upval(c);}
        prop(c);
		p[c]=upval(2*c)&upval(2*c+1);
        SV ans = query(a,b,2*c)&query(a,b,2*c+1);
        return ans;
    }
    
    void update(LV s, ll a, ll b, ll c=1LL) //update LV, range [a,b], current node, current range. initially: update(s,a,b)
    {
        ll x=range[c].ff; ll y=range[c].ss;
        if(y<a || x>b) {return ;}
        if(x>=a && y<=b) 
        {
            lazy[c]=s&lazy[c]; 
            return;
        }
		prop(c);
        update(s,a,b,2*c); update(s,a,b,2*c+1);
        p[c]=upval(2*c)&upval(2*c+1);
    }
};

vector<vector<ll> > CycleDecomp(vector<int> p) //cycle decomposition of permutation
{
	ll N = p.size(); vector<vector<ll> > ans; vector<ll> cur;
	vector<bool> visited; REP(i,0,N) {visited.pb(false);} 
	ll node;
	REP(i,0,N)
	{
		if(visited[i]) {continue;}
		node=i; cur.pb(node); node=p[node];
		while(node!=i)
		{
			cur.pb(node); node=p[node];
		}
		REP(i,0,cur.size()) {visited[cur[i]]=true;}
		ans.pb(cur);
		cur.clear();
	}
	return ans;
}

class WDiGraph
{
    public:
    ll N;
    vector<vector<pl> > adj; 
    vector<bool> visited;
    vector<bool> pr;
	
    WDiGraph(vector<vector<pl> > ad)
    {
        adj=ad; N=adj.size(); REP(i,0,N) {visited.pb(false); pr.pb(false);}
    }
    
    vector<ll> Djikstra(ll s)
    {
        vector<ll> d; REP(i,0,N) {d.pb(INF);}
        d[s]=0;
        priority_queue<pl> q;
        q.push(mp(0,s));
        ll cur;
        while(!q.empty())
        {
            cur=q.top().ss; q.pop();
            if(pr[cur]) {continue;}
            pr[cur]=true; 
            REP(i,0,adj[cur].size())
            {
                if(d[adj[cur][i].ff]>d[cur]+adj[cur][i].ss)
                {
                    d[adj[cur][i].ff]=d[cur]+adj[cur][i].ss;
                    q.push(mp(-d[adj[cur][i].ff],adj[cur][i].ff));
                }
            }
        }
        return d;
    }
};

ll minimum_walk(vector<int> p, int s) 
{
	ll N = p.size();
	vector<vector<ll> > C = CycleDecomp(p);
	vector<pl> range;
	REP(i,0,C.size()) {range.pb({*min_element(whole(C[i])),*max_element(whole(C[i]))});}
	vector<ll> xx; VV(xx,N-1,0); ST S(xx);
	REP(i,0,range.size()) {if(range[i].ff==range[i].ss) {continue;} S.update(1,range[i].ff,range[i].ss-1);}
	vector<bool> in; VV(in,N-1,false);
	REP(i,0,N-1) {if(S.query(i,i).a>0) {in[i]=true;}}
	ll l=0,r=N-2; 
	while(l<s && !in[l]) {l++;}
	while(r>=s && !in[r]) {r--;}
	ll ans=0LL;
	REP(i,l,r+1) {if(!in[i]) {ans+=2LL;}}
	REP(i,0,N) {ans+=((ll) (abs(p[i]-i)));}
	ll T=s; while(T<N-1 && in[T]) {T++;} 
	ll SS;
	REP(i,0,C.size()) {sort(whole(C[i]));}
	vector<vector<pl> > adj; VV(adj,C.size(),{});
	vector<ll> rep; VV(rep,N,-1); REP(i,0,C.size()) {REP(j,0,C[i].size()) {rep[C[i][j]]=i;}}
	SS=rep[s]; T=rep[T];
	vector<ll>::iterator it;
	REP(i,0,C.size())
	{
		REP(j,i+1,C.size())
		{
			it = lower_bound(whole(C[j]),range[i].ff);
			if(it==C[j].end() || (*it)>range[i].ss) {continue;}
			it = lower_bound(whole(C[i]),range[j].ff);
			if(it==C[i].end() || (*it)>range[j].ss) {continue;}
			adj[i].pb({j,0}); adj[j].pb({i,0});
		}
	}
	REP(i,0,N-1) {adj[rep[i]].pb({rep[i+1],1LL}); adj[rep[i+1]].pb({rep[i],1LL});} 
	WDiGraph G(adj); vector<ll> d = G.Djikstra(SS); ans+=2LL*d[T];
	return ans;
}

Compilation message

books.cpp:5: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    5 | #pragma GCC optimization ("O3")
      | 
books.cpp:6: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
    6 | #pragma GCC optimization ("unroll-loops")
      |
# Verdict Execution time Memory Grader output
1 Correct 1 ms 288 KB Output is correct
2 Correct 1 ms 292 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 292 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 288 KB Output is correct
2 Correct 1 ms 292 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 292 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 460 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 4 ms 588 KB Output is correct
22 Correct 2 ms 588 KB Output is correct
23 Correct 3 ms 588 KB Output is correct
24 Correct 2 ms 460 KB Output is correct
25 Correct 3 ms 548 KB Output is correct
26 Correct 1 ms 460 KB Output is correct
27 Correct 1 ms 460 KB Output is correct
28 Correct 1 ms 460 KB Output is correct
29 Correct 2 ms 588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 288 KB Output is correct
2 Correct 1 ms 292 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 292 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 460 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 4 ms 588 KB Output is correct
22 Correct 2 ms 588 KB Output is correct
23 Correct 3 ms 588 KB Output is correct
24 Correct 2 ms 460 KB Output is correct
25 Correct 3 ms 548 KB Output is correct
26 Correct 1 ms 460 KB Output is correct
27 Correct 1 ms 460 KB Output is correct
28 Correct 1 ms 460 KB Output is correct
29 Correct 2 ms 588 KB Output is correct
30 Correct 637 ms 214656 KB Output is correct
31 Correct 553 ms 197504 KB Output is correct
32 Execution timed out 2092 ms 215592 KB Time limit exceeded
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 528 KB Output is correct
2 Correct 2 ms 588 KB Output is correct
3 Correct 3 ms 548 KB Output is correct
4 Correct 3 ms 588 KB Output is correct
5 Correct 2 ms 588 KB Output is correct
6 Correct 4 ms 588 KB Output is correct
7 Correct 3 ms 548 KB Output is correct
8 Correct 4 ms 588 KB Output is correct
9 Correct 3 ms 588 KB Output is correct
10 Correct 3 ms 588 KB Output is correct
11 Correct 2 ms 460 KB Output is correct
12 Correct 1 ms 460 KB Output is correct
13 Correct 2 ms 460 KB Output is correct
14 Correct 1 ms 460 KB Output is correct
15 Correct 1 ms 460 KB Output is correct
16 Correct 1 ms 460 KB Output is correct
17 Correct 3 ms 616 KB Output is correct
18 Correct 2 ms 588 KB Output is correct
19 Correct 2 ms 460 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 288 KB Output is correct
2 Correct 1 ms 292 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 292 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 0 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 460 KB Output is correct
20 Correct 1 ms 460 KB Output is correct
21 Correct 4 ms 588 KB Output is correct
22 Correct 2 ms 588 KB Output is correct
23 Correct 3 ms 588 KB Output is correct
24 Correct 2 ms 460 KB Output is correct
25 Correct 3 ms 548 KB Output is correct
26 Correct 1 ms 460 KB Output is correct
27 Correct 1 ms 460 KB Output is correct
28 Correct 1 ms 460 KB Output is correct
29 Correct 2 ms 588 KB Output is correct
30 Correct 637 ms 214656 KB Output is correct
31 Correct 553 ms 197504 KB Output is correct
32 Execution timed out 2092 ms 215592 KB Time limit exceeded
33 Halted 0 ms 0 KB -